Spatiotemporal Chaos and Particle Dynamics in Complex Flows
复杂流动中的时空混沌和粒子动力学
基本信息
- 批准号:0803153
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****The accepted methods of studying fluid flows rely on tracking suspended particles, which are assumed to follow the motion of the fluid. However, in some cases this assumption may fail, casting doubt on the reliability of such measurements. Hence, it is important to achieve a better understanding of the motion of particles in fluid flows. The project, at a predominately undergraduate institution, will focus on the role of the inertia of particles in causing deviations from ideal particle motion, and potentially provides a way to improve fluid dynamical measurement methods. In related work, the project will use tracked particles to investigate the transition from regular fluid flow to the state of chaotic flow, where the flow becomes unpredictable. Such flows are widespread, and test our understanding of complex states. The novel method to be employed in the project involves the characterization of complex flow patterns by locating unique features of the flow pattern, such as the centers of local rotation, or vortices. The experiments will be conducted by pairing a postdoctoral trainee with undergraduate students. This approach provides important training advantages for both. ****TECHNICAL ABSTRACT****The motion of particles in fluids is important both as a fundamental topic in materials science, and because it provides a powerful diagnostic method of studying fluid flow. This project at a predominately undergraduate institution, will explore the theme of particle dynamics in fluids by means of small-scale well-controlled laboratory experiments. The motion of particles of varying sizes in flows at modest Reynolds number is investigated, to understand how the particles? behavior changes as their inertia increases. An important result will be to understand the conditions under which transported particles can serve as passive flow tracers, as is assumed for nearly every modern flow measurement technique. The behavior of a floating sheared layer of particles will be studied to gain insight into the deformation of soft materials, and particles flowing in a micro-channel will allow study of the transition to irreversible flow. Finally, the project will investigate the transition to space-time chaos by determining the curvature of particle trajectories. This novel method allows the special topological features of a complex fluid flow to be determined, and to be tracked over time as the flow makes a transition from regular flow to the state of space-time chaos. The pairing of a postdoctoral trainee with undergraduate students in this research provides important training advantages for both.
* 非技术摘要 * 研究流体流动的公认方法依赖于跟踪悬浮颗粒,这些悬浮颗粒被假定为跟随流体的运动。 然而,在某些情况下,这一假设可能会失败,使人们对这种测量的可靠性产生怀疑。 因此,更好地理解流体流动中颗粒的运动是很重要的。 该项目在一个主要的本科院校进行,将重点关注粒子惯性在导致偏离理想粒子运动中的作用,并可能提供一种改进流体动力学测量方法的方法。 在相关工作中,该项目将使用跟踪粒子来研究从规则流体流动到混沌流动状态的过渡,在混沌流动状态下,流动变得不可预测。 这种流动是普遍存在的,并且考验着我们对复杂状态的理解。 该项目采用的新方法涉及通过定位流型的独特特征(如局部旋转中心或涡流)来表征复杂流型。 实验将通过博士后实习生与本科生配对进行。 这种方法为双方提供了重要的培训优势。* 技术摘要 * 流体中粒子的运动是重要的,这既是材料科学的基础课题,也是因为它提供了研究流体流动的强大诊断方法。 这个项目在一个主要的本科院校,将探讨通过小规模的控制良好的实验室实验的流体中的粒子动力学的主题。 不同尺寸的颗粒在适当的雷诺数流动的运动进行了研究,了解如何颗粒?行为随着惯性的增加而改变。 一个重要的结果将是了解的条件下,传输的颗粒可以作为被动的流量示踪剂,是假设几乎每一个现代流量测量技术。 将研究颗粒的浮动剪切层的行为,以深入了解软材料的变形,并且在微通道中流动的颗粒将允许研究向不可逆流动的转变。 最后,该项目将通过确定粒子轨迹的曲率来研究向时空混沌的过渡。这种新的方法允许特殊的拓扑特征的复杂的流体流被确定,并随着时间的推移进行跟踪的流动,使从正常的流动的时空混沌状态的过渡。 在这项研究中,博士后实习生与本科生的配对为双方提供了重要的培训优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry Gollub其他文献
Jerry Gollub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry Gollub', 18)}}的其他基金
RUI: Granular Dynamics, and Fluid Mixing in Complex Flows
RUI:颗粒动力学和复杂流动中的流体混合
- 批准号:
0405187 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
RUI: Granular Materials, Fluid Mixing, and Related Nonlinear Phenomena
RUI:颗粒材料、流体混合和相关非线性现象
- 批准号:
0072203 - 财政年份:2000
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
RUI: Granular Friction, Fluid Mixing and Related Nonlinear Phenomena
RUI:颗粒摩擦、流体混合及相关非线性现象
- 批准号:
9704301 - 财政年份:1997
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
RUI: Dynamics of Interfacial Patterns
RUI:界面模式的动力学
- 批准号:
9319973 - 财政年份:1994
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Film Flow Instabilities & Spatiotemporal Dynamics
薄膜流动不稳定性
- 批准号:
9115005 - 财政年份:1992
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Research in Undergraduate Institutions: Pattern Formation from Interfacial Instabilities: Dendritic Solidification (Materials Research)
本科院校研究:界面不稳定性的图案形成:枝晶凝固(材料研究)
- 批准号:
8503543 - 财政年份:1985
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Optical Studies of Pattern Evolution, Secondary Instabilities, and Weak Turbulence
模式演化、二次不稳定性和弱湍流的光学研究
- 批准号:
8310933 - 财政年份:1983
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Stochastic Flow and Nonlinear Dynamics
随机流和非线性动力学
- 批准号:
7912150 - 财政年份:1980
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research on Time-Dependent Instabilities And the Transition to Turbulence in Simple Systems
简单系统中瞬态不稳定性和湍流转变的合作研究
- 批准号:
7682511 - 财政年份:1977
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant