Conference: Random matrices from quantum chaos to the Riemann zeta function.

会议:从量子混沌到黎曼 zeta 函数的随机矩阵。

基本信息

  • 批准号:
    2306332
  • 负责人:
  • 金额:
    $ 1.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This award provides partial support for early career US-based mathematicians to attend the conference "Random matrices from quantum chaos to the Riemann zeta function’’. This meeting will take place at the University of Bristol on 5–7th July 2023. The conference will focus on highlighting recent mathematical achievements, spanning topics from Analytic Number Theory, to Quantum Chaos, to Random Matrix Theory. This award will facilitate interaction between early career mathematicians and the leading experts in the field. Half a century ago, mathematicians discovered that various behaviors of the Riemann zeta function can accurately be predicted by particular large Hermitian random matrices. In the intervening years, ideas from quantum chaos, statistical physics, probability, combinatorics, and more, have furthered our understanding of the Riemann zeta function and other L-functions. One of the most recent advances has been the significant progress towards the Fyodorov-Keating conjecture(s) concerning extreme values of the Riemann zeta function and of characteristic polynomials. This conference will bring together experts working at these interfaces alongside early career researchers, and provide ample opportunity for learning and discussion. The conference website is https://web-eur.cvent.com/event/0c99dff3-c047-4cd1-b82a-dba87f804733/summary?RefId=SOMThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国早期职业数学家参加“从量子混沌到黎曼ζ函数的随机矩阵”会议提供部分支持。本次会议将于2023年7月5日至7日在布里斯托尔大学举行。会议将重点突出最近的数学成就,涵盖从解析数论到量子混沌到随机矩阵理论的主题。该奖项将促进早期职业数学家与该领域顶尖专家之间的互动。半个世纪以前,数学家发现黎曼ζ函数的各种行为可以通过特定的大厄米随机矩阵精确地预测。在此期间,量子混沌、统计物理、概率论、组合学等领域的思想进一步加深了我们对黎曼ζ函数和其他l函数的理解。最近的进展之一是关于黎曼ζ函数和特征多项式极值的Fyodorov-Keating猜想的重大进展。本次会议将汇集在这些界面工作的专家和早期职业研究人员,并提供充足的学习和讨论机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emma Bailey其他文献

Breaking the silence: Providing authentic opportunities for parents to be heard
打破沉默:为父母提供真正表达意见的机会
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    C. Solvason;J. Cliffe;Emma Bailey
  • 通讯作者:
    Emma Bailey
Novelty Response of Wild African Apes to Camera Traps
野生非洲猿对相机陷阱的新奇反应
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Ammie K. Kalan;G. Hohmann;M. Arandjelovic;C. Boesch;Maureen S. McCarthy;Anthony Agbor;Samuel Angedakin;Emma Bailey;Cosma Cosma Wilungula Balongelwa;M. Bessone;Gaëlle Bocksberger;Sally Coxe;T. Deschner;Marie;Paula Dieguez;B. Fruth;Ilka Herbinger;A. Granjon;Josephine S. Head;Y. A. Kablan;Kevin E. Langergraber;A. Lokasola;G. Maretti;Sergio Marrocoli;M. Mbende;J. Moustgaard;Paul K. N’Goran;M. Robbins;J. V. Schijndel;V. Sommer;M. Surbeck;N. Tagg;J. Willie;R. Wittig;H. Kühl
  • 通讯作者:
    H. Kühl
‘The whole is greater’. Developing music therapy services in the National Health Service: A case study revisited
“整体更伟大”。在国家卫生服务中发展音乐治疗服务:重新审视案例研究。
  • DOI:
    10.1177/1359457516637324
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    J. Wood;S. Sandford;Emma Bailey
  • 通讯作者:
    Emma Bailey
Strontium isoscape of sub-Saharan Africa allows tracing origins of victims of the transatlantic slave trade
撒哈拉以南非洲锶的同位素分布特征可追溯跨大西洋奴隶贸易受害者的起源
  • DOI:
    10.1038/s41467-024-55256-0
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xueye Wang;Gaëlle Bocksberger;Mimi Arandjelovic;Anthony Agbor;Samuel Angedakin;Floris Aubert;Emmanuel Ayuk Ayimisin;Emma Bailey;Donatienne Barubiyo;Mattia Bessone;René Bobe;Matthieu Bonnet;Renée Boucher;Gregory Brazzola;Simon Brewer;Kevin C. Lee;Susana Carvalho;Rebecca Chancellor;Chloe Cipoletta;Heather Cohen;Sandi R. Copeland;Katherine Corogenes;Ana Maria Costa;Charlotte Coupland;Bryan Curran;Darryl J. de Ruiter;Tobias Deschner;Paula Dieguez;Karsten Dierks;Emmanuel Dilambaka;Dervla Dowd;Andrew Dunn;Villard Ebot Egbe;Manfred Finckh;Barbara Fruth;Liza Gijanto;Yisa Ginath Yuh;Annemarie Goedmakers;Cameron Gokee;Rui Gomes Coelho;Alan H. Goodman;Anne-Céline Granjon;Vaughan Grimes;Cyril C. Grueter;Anne Haour;Daniela Hedwig;Veerle Hermans;R. Adriana Hernandez-Aguilar;Gottfried Hohmann;Inaoyom Imong;Kathryn J. Jeffery;Sorrel Jones;Jessica Junker;Parag Kadam;Mbangi Kambere;Mohamed Kambi;Ivonne Kienast;Kelly J. Knudson;Kevin E. Langergraber;Vincent Lapeyre;Juan Lapuente;Bradley Larson;Thea Lautenschläger;Petrus le Roux;Vera Leinert;Manuel Llana;Amanda Logan;Brynn Lowry;Tina Lüdecke;Giovanna Maretti;Sergio Marrocoli;Rumen Fernandez;Patricia J. McNeill;Amelia C. Meier;Paulina Meller;J. Cameron Monroe;David Morgan;Felix Mulindahabi;Mizuki Murai;Emily Neil;Sonia Nicholl;Protais Niyigaba;Emmanuelle Normand;Lucy Jayne Ormsby;Orume Diotoh;Liliana Pacheco;Alex Piel;Jodie Preece;Sebastien Regnaut;Francois G. Richard;Michael P. Richards;Aaron Rundus;Crickette Sanz;Volker Sommer;Matt Sponheimer;Teresa E. Steele;Fiona A. Stewart;Nikki Tagg;Luc Roscelin Tédonzong;Alexander Tickle;Lassané Toubga;Joost van Schijndel;Virginie Vergnes;Nadege Wangue Njomen;Erin G. Wessling;Jacob Willie;Roman M. Wittig;Kyle Yurkiw;Andrew M. Zipkin;Klaus Zuberbühler;Hjalmar S. Kühl;Christophe Boesch;Vicky M. Oelze
  • 通讯作者:
    Vicky M. Oelze

Emma Bailey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
  • 批准号:
    2331037
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Standard Grant
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
  • 批准号:
    2331096
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Standard Grant
Random matrices, operators, and analytic functions
随机矩阵、运算符和解析函数
  • 批准号:
    2246435
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
  • 批准号:
    2246624
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306439
  • 财政年份:
    2023
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
CAREER: Beyond Independence: Random Matrices and Applications
职业:超越独立:随机矩阵和应用
  • 批准号:
    2143142
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2152588
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Continuing Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2022-03483
  • 财政年份:
    2022
  • 资助金额:
    $ 1.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了