RI-Medium: Collaborative Research: Dynamically-Structured Conditional Random Fields for Complex, Natural Domains
RI-Medium:协作研究:复杂自然域的动态结构条件随机场
基本信息
- 批准号:0803256
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Recent progress in bioinformatics, natural language understanding, computer vision, information retrieval and other areas has been significantly enabled by "conditional random fields" (CRFs)---machine learning models of structured outputs, such as sequences, trees and grids. However, many of the fundamental problems in these application areas involve not just fixed structures, but structures that must be inferred. This structural ambiguity arises from interacting choices at different levels of representation (e.g. from character sequences to meaning, or from pixels to scene interpretation). The project will move conditional random fields (CRFs) beyond fixed graphical structures to structures that are constructed dynamically during inference. Such a capability will be key to building next-generation systems that solve, not just an individual piece of a problem, but complex multi-step problems, as found in natural language understanding and computer vision, in a unified way.
摘要生物信息学、自然语言理解、计算机视觉、信息检索和其他领域的最新进展在很大程度上是由条件随机场(CRF)实现的-结构化输出的机器学习模型,如序列、树和网格。然而,这些应用领域中的许多基本问题不仅涉及固定的结构,而且涉及必须推断的结构。这种结构上的歧义产生于不同表示级别上的交互选择(例如,从字符序列到含义,或者从像素到场景解释)。该项目将条件随机场(CRF)从固定的图形结构转移到在推理过程中动态构建的结构。这种能力将是构建下一代系统的关键,这些系统不仅能解决单个问题,而且能以统一的方式解决自然语言理解和计算机视觉中的复杂多步问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben Taskar其他文献
Ben Taskar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben Taskar', 18)}}的其他基金
RI: Small: Collaborative Research: Statistical Learning of Language Universals
RI:小型:协作研究:语言共性的统计学习
- 批准号:
1116097 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Computation and Approximation in Structured Learning
职业:结构化学习中的计算和近似
- 批准号:
1054215 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant