Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making

协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策

基本信息

项目摘要

In our fast-paced and increasingly online world making fair, equitable, and informed decisions is both more important and harder than ever. In situations where a group must come to a consensus, in the presence of varied and rapidly changing information, achieving fairness and equity becomes even more difficult. In response, this project will combine research from social choice theory and information elicitation to create a new research direction called informed group decision making. This new research area extends current models and mechanisms of group decision making by explicitly accounting for the role that information has on agents' final decisions. The final goal is to develop new models and methods that can be used to incentivize individuals to ensure group decisions achieve a desired outcome. This research promises cross-institutional, educational, and societal impacts and will broaden the participation of underrepresented groups in computing research, train highly qualified professionals, and engage students from underrepresented groups to pursue studies in computing-related fields.This research consists of three dimensions for foundational research and one direction for bridging theory and practice. Dimension 1: Representation aims to develop novel models for combining agents’ subjective and objective preferences, information, and responses to queries. Dimension 2: Aggregation aims to introduce novel efficiency and fairness criteria for informed group decision making, and design novel mechanisms to achieve them for truthful, cooperative agents. Dimension 3: Incentives aims to address agents’ incentives in informed group decision making by proposing novel equilibrium concepts, conducting analysis of agents’ behavior, and designing novel incentive-aware mechanisms. To bridge theory and practice, the models, algorithms, and mechanisms developed in this project will be deployed, validated, and refined at the open-source Online Preference Reporting and Aggregation (OPRA) system via various educational and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们这个快节奏和日益网络化的世界里,做出公平、公平和知情的决定比以往任何时候都更加重要和困难。在一个群体必须达成共识的情况下,在各种快速变化的信息面前,实现公平和公平变得更加困难。作为回应,本项目将结合社会选择理论和信息诱导的研究,创建一个新的研究方向,称为知情群体决策。这一新的研究领域通过明确考虑信息对代理人最终决策的作用,扩展了现有的群体决策模型和机制。最终目标是开发新的模式和方法,用来激励个人确保群体决策达到预期的结果。这项研究承诺了跨机构、教育和社会影响,并将扩大代表性不足群体在计算研究中的参与,培养高素质的专业人员,并吸引代表性不足群体的学生在计算相关领域继续学习。这项研究包括基础研究的三个维度和理论与实践的一个桥梁方向。维度1:表示旨在开发新的模型,用于结合代理的主观和客观偏好、信息和对查询的响应。维度2:聚集旨在为知情的群体决策引入新的效率和公平标准,并为诚实、合作的代理设计新的机制来实现这些标准。维度3:激励旨在通过提出新的均衡概念、对代理的行为进行分析以及设计新的激励感知机制来解决代理在知情群体决策中的激励问题。为了在理论和实践之间架起桥梁,本项目中开发的模型、算法和机制将通过各种教育和推广活动在开源在线偏好报告和汇总(OPRA)系统中进行部署、验证和改进。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grant Schoenebeck其他文献

拡張Rossler方程式に基づく交代型カオス同期を用いた暗号鍵配送
基于扩展罗斯勒方程的交替混沌同步的密钥分配
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingjun Ma;Bo Li;Yisen Wang;Sarah M. Erfani;Sudanthi N. R. Wijewickrema;Grant Schoenebeck;Dawn Song;Michael E. Houle;James Bailey;大西真史,深津祐貴,大抜倖司朗,宮野尚哉
  • 通讯作者:
    大西真史,深津祐貴,大抜倖司朗,宮野尚哉
Eliciting Honest Information From Authors Using Sequential Review
使用顺序审查从作者那里获取诚实的信息
  • DOI:
    10.48550/arxiv.2311.14619
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yichi Zhang;Grant Schoenebeck;Weijie Su
  • 通讯作者:
    Weijie Su
A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
顶点覆盖Lovasz-Schrijver SDP松弛的线性圆下界
Eliciting Informative Text Evaluations with Large Language Models
使用大型语言模型进行信息丰富的文本评估
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxuan Lu;Shengwei Xu;Yichi Zhang;Yuqing Kong;Grant Schoenebeck
  • 通讯作者:
    Grant Schoenebeck
Spot Check Equivalence: an Interpretable Metric for Information Elicitation Mechanisms
抽查等价性:信息获取机制的可解释指标
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengwei Xu;Yichi Zhang;Paul Resnick;Grant Schoenebeck
  • 通讯作者:
    Grant Schoenebeck

Grant Schoenebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grant Schoenebeck', 18)}}的其他基金

Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
  • 批准号:
    2208662
  • 财政年份:
    2022
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
AF:Small:Unifying Information Aggregation and Information Elicitation
AF:Small:统一信息聚合和信息获取
  • 批准号:
    2007256
  • 财政年份:
    2020
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
AF: Small: Eliciting Accurate and Useful Information from Heterogeneous Agents
AF:小:从异构代理中获取准确有用的信息
  • 批准号:
    1618187
  • 财政年份:
    2016
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
  • 批准号:
    1535912
  • 财政年份:
    2015
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
CAREER: Social Networks - Processes, Structures, and Algorithms
职业:社交网络 - 流程、结构和算法
  • 批准号:
    1452915
  • 财政年份:
    2015
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 57.47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了