HCC-Medium: End-user debugging of machine-learned programs

HCC-Medium:机器学习程序的最终用户调试

基本信息

  • 批准号:
    0803487
  • 负责人:
  • 金额:
    $ 61.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This is a project to give the end user some ability to debug programs that were written by a machine instead of a person, especially when the users are not expert programmers. This is the problem faced by users of a new sort of program, namely, one generated by a machine learning system. For example, intelligent user interfaces, categorizers of email and web sites, and recommender systems use machine learning to learn how to behave. This learned set of behaviors is a program. Learned programs do not come into existence until the learning environment has left the hands of the machine learning specialist, because they learn from the user's ongoing data. Thus, if these programs make a mistake, the only one present to debug them is the user. Giving end users the ability to debug such programs can improve the speed and accuracy of these systems.Specifically, the project envisions a fine-grained, iterative, interactive debugging process. First, a user notices an erroneous classification (with the system's help, based on reasoning about its own competence), such as an email message that might be misfiled. Second, the user asks for an explanation. Third, using the system's explanation, the user provides reasoning constraints, declaring, for example, that "today" is not an important word, and that anything from the company president should go into the "company" folder. The learned program reevaluates competence models and redoes its reasoning, giving the user an opportunity to immediately see the result of the change. The loop then begins again. Thus, the goals of this project are the following: 1. To help users identify reasoning problems, and to provide explanations of the behavior of machine-learned programs suitable for end users. 2. To elicit rich feedback from the user, incorporating it into the reasoning of the learned program. 3. To improve the speed and accuracy of machine learning by integrating this rich feedback into learning.In addition to the potential speed and accuracy improvement in the machine learner, users may become more productive and make fewer errors. Providing disclosure of the learned programs' reasoning engenders trust, and with it, increased willingness to use the system. Thus, this project has the potential to make significant advances in the user acceptance of machine learning in a variety of new, real-world applications. Combining human constraints and guidance with statistical learning could enable highly accurate learning from small data sets, which is critical to creating successful intelligent user interfaces. The project will also result in learning systems whose data sources and input features are easy to change and whose behavior is easy to control. In combining human-computer interaction principles with machine learning, this project opens opportunities for novel perspectives, especially in the realm of interdisciplinary education. Graduate students will be trained in this blended research area, and aspects of it will be incorporated in classes in both human-computer interaction and machine learning, and in other educational experiences for undergraduates and high school students.
这是一个让最终用户能够调试机器而不是人编写的程序的项目,特别是当用户不是专业程序员时。 这是一种新程序的用户所面临的问题,即由机器学习系统生成的程序。例如,智能用户界面、电子邮件和网站的分类器以及推荐系统使用机器学习来学习如何行为。这一系列习得的行为就是一个程序。在学习环境离开机器学习专家的手之前,学习程序不会存在,因为它们从用户的持续数据中学习。因此,如果这些程序犯了错误,唯一在场调试它们的是用户。 让最终用户能够调试这些程序可以提高这些系统的速度和准确性。具体来说,该项目设想了一个细粒度的,迭代的,交互式的调试过程。首先,用户注意到一个错误的分类(在系统的帮助下,基于对自身能力的推理),例如可能被错误归档的电子邮件。第二,用户要求解释。第三,使用系统的解释,用户提供推理约束,例如,声明“今天”不是一个重要的词,并且来自公司总裁的任何内容都应该进入“公司”文件夹。学习后的程序会重新评估能力模型,并重新进行推理,让用户有机会立即看到变化的结果。然后循环再次开始。因此,本项目的目标如下:1。帮助用户识别推理问题,并提供适合最终用户的机器学习程序的行为解释。2.从用户那里得到丰富的反馈,并将其纳入学习程序的推理中。3.通过将这种丰富的反馈整合到学习中来提高机器学习的速度和准确性。除了机器学习器的潜在速度和准确性提高外,用户可能会变得更有效率,并减少错误。提供学习程序推理的公开会产生信任,并增加使用系统的意愿。 因此,该项目有可能在各种新的现实世界应用中使用户接受机器学习方面取得重大进展。 将人类的约束和指导与统计学习相结合,可以从小数据集中实现高度准确的学习,这对于创建成功的智能用户界面至关重要。该项目还将导致学习系统的数据源和输入功能很容易改变,其行为很容易控制。 通过将人机交互原理与机器学习相结合,该项目为新的视角提供了机会,特别是在跨学科教育领域。 研究生将在这个混合研究领域接受培训,其各个方面将纳入人机交互和机器学习的课程以及本科生和高中生的其他教育体验中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Margaret Burnett其他文献

Principles for a Generalized Idea GardenImage
通用理念 GardenImage 的原则
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Jernigan;Amber Horvath;M. Lee;Margaret Burnett;Taylor Cuilty;Sandeep Kuttal;Anicia;Peters;Irwin Kwan;Faezeh Bahmani;Andrew;Ko;J. Christopher;Mendez;A. Oleson
  • 通讯作者:
    A. Oleson
Directive clinique de consensus sur la santé sexuelle de la femme
女性健康共识诊所指令
  • DOI:
    10.1016/s1701-2163(16)35342-7
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    J. Lamont;Krisztina Bajzak;C. Bouchard;Margaret Burnett;Sandra Byers;T. Cohen;William E. Fisher;Stephen Holzapfel;Vyta Senikas
  • 通讯作者:
    Vyta Senikas
Special report: The AgAID AI institute for transforming workforce and decision support in agriculture
  • DOI:
    10.1016/j.compag.2022.106944
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ananth Kalyanaraman;Margaret Burnett;Alan Fern;Lav Khot;Joshua Viers
  • 通讯作者:
    Joshua Viers
N<sup>o</sup> 279-Directive clinique de consensus sur la santé sexuelle de la femme
  • DOI:
    10.1016/j.jogc.2017.10.016
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Lamont;Krisztina Bajzak;Céline Bouchard;Margaret Burnett;Sandra Byers;Trevor Cohen;William Fisher;Stephen Holzapfel;Vyta Senikas
  • 通讯作者:
    Vyta Senikas
Using traits of web macro scripts to predict reuse
  • DOI:
    10.1016/j.jvlc.2010.08.003
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chris Scaffidi;Chris Bogart;Margaret Burnett;Allen Cypher;Brad Myers;Mary Shaw
  • 通讯作者:
    Mary Shaw

Margaret Burnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Margaret Burnett', 18)}}的其他基金

WORKSHOP: Doctoral Consortium at the ACM Computer-Human Interaction (CHI 2023) Conference
研讨会:ACM 人机交互 (CHI 2023) 会议上的博士联盟
  • 批准号:
    2317080
  • 财政年份:
    2023
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Embedding Equitable Design through Undergraduate Computing Curricula
将公平设计纳入本科计算机课程
  • 批准号:
    2042324
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
CHS: Small: Software to Support Diverse Problem Solvers
CHS:小型:支持不同问题解决者的软件
  • 批准号:
    1528061
  • 财政年份:
    2015
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
CER: Collaborative Research: Computing Education through Collaborative Debugging
CER:协作研究:通过协作调试进行计算教育
  • 批准号:
    1240957
  • 财政年份:
    2012
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
HCC: Small: Supporting Males' and Females' Problem-Solving Strategies in End-User Debugging
HCC:小:支持男性和女性在最终用户调试中解决问题的策略
  • 批准号:
    0917366
  • 财政年份:
    2009
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
ITWF: Gender HCI Issues in Problem-Solving Software
ITWF:问题解决软件中的性别 HCI 问题
  • 批准号:
    0420533
  • 财政年份:
    2004
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Workshop Event: Programming Languages/Environments for the Educationally Disadvantaged
研讨会活动:针对教育弱势群体的编程语言/环境
  • 批准号:
    0324756
  • 财政年份:
    2003
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: Dependable End-User Software
ITR:协作研究:可靠的最终用户软件
  • 批准号:
    0325273
  • 财政年份:
    2003
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
ITR: End-User Software Engineering
ITR:最终用户软件工程
  • 批准号:
    0082265
  • 财政年份:
    2000
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
Experimental Software Systems: An Experimental Environment for Integrating Testing and Debugging in Form-Based Visual Programming Languages
实验软件系统:基于表单的可视化编程语言集成测试和调试的实验环境
  • 批准号:
    9806821
  • 财政年份:
    1998
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SaTC: CORE: Medium: End-to-end Verified Secure Sandboxed Systems
协作研究:SaTC:核心:中:端到端验证的安全沙盒系统
  • 批准号:
    2155235
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211952
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: From Acoustic Signal to Morphosyntactic Analysis in One End-to-End Neural System
合作研究:RI:媒介:从声学信号到端到端神经系统中的形态句法分析
  • 批准号:
    2211951
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: End-to-end Verified Secure Sandboxed Systems
协作研究:SaTC:核心:中:端到端验证的安全沙盒系统
  • 批准号:
    2154964
  • 财政年份:
    2022
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Robust Perception through End-User Adaptation
合作研究:RI:媒介:通过最终用户适应实现稳健感知
  • 批准号:
    2107077
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Robust Perception through End-User Adaptation
合作研究:RI:媒介:通过最终用户适应实现稳健感知
  • 批准号:
    2107161
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Detroit – A New End-to-end System for Practical and Accessible IoT
CNS 核心:中:底特律 — 实用且可访问的物联网的全新端到端系统
  • 批准号:
    2107101
  • 财政年份:
    2021
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
RI: Medium: End-to-end Computational Sensing
RI:中:端到端计算传感
  • 批准号:
    1900847
  • 财政年份:
    2019
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: End-to-End Support for Privacy in the Internet -of-things
SaTC:核心:中:物联网隐私的端到端支持
  • 批准号:
    1801472
  • 财政年份:
    2018
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Standard Grant
NeTS: Medium: Implications of Receiver RF Front End Nonlinearity on Network Performance: Fundamentals, Limitations, and Management Strategies
NeTS:中:接收器射频前端非线性对网络性能的影响:基本原理、局限性和管理策略
  • 批准号:
    1564148
  • 财政年份:
    2016
  • 资助金额:
    $ 61.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了