Gaps Between Primes
素数之间的差距
基本信息
- 批准号:0804181
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2005 the investigator, jointly with Janos Pintz and Cem Yildirim introduced a method that proved for the first time that there exist infinitely often pairs of prime numbers whose difference is smaller than any fraction of the average spacing between primes. The method is especially interesting because it demonstrates that the distribution of primes in arithmetic progressions contains more information on the behavior of primes than had previously been recognized. In particular, if the primes are well distributed in "thin" arithmetic progressions then one can prove that there are always pairs of primes with difference 16 or less. This conditional result shows that the twin prime conjecture - that there are infinitely many primes differing by 2, is approachable with this type of information. More recently the PI in joint work with Yildirim and Pintz and Sid Graham have been working on applying our method to numbers with a specific number of prime factors, especially numbers which have exactly two prime factors. The main goal of this project is to further develop our method to extract the best possible quantitative information on small gaps between primes, and in addition to investigate applications to other problems in number theory. The investigator is also interested in questions related to the use of explicit formulas to study zeros of the Riemann zeta-function.This project is concerned with prime numbers, an ancient subject extending back to the Greeks and up to the present with many important applications in computer science and cryptography. Despite the simplicity of how they arise, prime numbers offer some of the most challenging and difficult problems in mathematics. Many if not most mathematicians judge the most famous and important unsolved problem in mathematics to be the Riemann Hypothesis, and this is equivalent to the primes being distributed in a fairly regular distribution. More generally, the field of number theory has applications throughout mathematics and fields that make use of mathematics.
在2005年,他与Janos Pintz和Cem Yildirim一起提出了一种方法,首次证明了存在无穷多对素数,它们的差小于素数之间平均间距的任何分数。该方法是特别有趣的,因为它表明,在算术级数中的素数的分布包含更多的信息的行为素数比以前已经认识到。特别是,如果素数在“薄”算术级数中分布良好,那么我们可以证明总有一对素数的差小于等于16。这个条件结果表明,孪生素数猜想--有无穷多个素数的差为2,是可以用这种类型的信息来实现的。最近PI在联合工作与Yildirim和Pintz和Sid Graham一直致力于将我们的方法应用于数字与特定数量的素因子,特别是数字正好有两个素因子。该项目的主要目标是进一步发展我们的方法,以提取素数之间小间隙的最佳定量信息,并研究数论中其他问题的应用。研究者还对使用显式公式来研究Riemann zeta函数的零点的相关问题感兴趣。这个项目涉及素数,这是一个古老的主题,可以追溯到希腊人,直到现在在计算机科学和密码学中有许多重要的应用。尽管它们的产生方式很简单,但素数提供了一些数学中最具挑战性和最困难的问题。许多数学家(如果不是大多数的话)认为数学中最著名和最重要的未解决的问题是黎曼假设,这等价于素数以相当规则的分布。更一般地说,数论领域在整个数学和使用数学的领域都有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Goldston其他文献
Explicit calculations for Sono’s multidimensional sieve of ?₂-numbers
Sono 多维 ?2 数筛的显式计算
- DOI:
10.1090/mcom/3938 - 发表时间:
2024 - 期刊:
- 影响因子:2
- 作者:
Daniel Goldston;Apoorva Panidapu;Jordan Schettler - 通讯作者:
Jordan Schettler
Daniel Goldston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Goldston', 18)}}的其他基金
Distribution of Prime Numbers and Related Topics
素数分布及相关主题
- 批准号:
1104434 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
RUI: Moments of Short Divisor Sums and the Distribution of Primes
RUI:短除数和的矩和素数分布
- 批准号:
0300563 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
RUI: Distribution of Primes and a Higher Correlation Method
RUI:素数分布和更高的相关性方法
- 批准号:
0070777 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Distribution of Primes and Other Topics in Analytic Number Theory
素数分布和解析数论中的其他主题
- 批准号:
9626903 - 财政年份:1996
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Binary Additive Problems Involving Primes and Other Topics in Analytic Number Theory
数学科学:RUI:涉及素数和解析数论中其他主题的二元加法问题
- 批准号:
9205533 - 财政年份:1992
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Topics in Analytic Number TheoryRelated to the Distribution of Primes
数学科学:RUI:与素数分布相关的解析数论主题
- 批准号:
9003329 - 财政年份:1990
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiplicative and Additive Theory ofPrime Numbers and Related Topics in Analytic Number Theory
数学科学:素数的乘法和加法理论以及解析数论中的相关主题
- 批准号:
8705710 - 财政年份:1987
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Distance between primes
素数之间的距离
- 批准号:
572927-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Distance between primes
素数之间的距离
- 批准号:
572924-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Distance between primes
素数之间的距离
- 批准号:
562638-2021 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Recent progress on gaps between primes
素数差距的最新进展
- 批准号:
542349-2019 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Gaps between primes
素数之间的间隙
- 批准号:
520541-2017 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Bounded gaps between primes and other sequences
素数和其他序列之间的有界间隙
- 批准号:
483448-2015 - 财政年份:2015
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Most Common Gaps Between Primes
素数之间最常见的差距
- 批准号:
424958-2012 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Distance between primes
素数之间的距离
- 批准号:
404922-2010 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
University Undergraduate Student Research Awards
Analogies between primes and knots, number theory and 3-dim. Topology
素数和结、数论和三维之间的类比。
- 批准号:
13640014 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)