Distribution of Primes and Other Topics in Analytic Number Theory
素数分布和解析数论中的其他主题
基本信息
- 批准号:9626903
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Goldston 9626903 The distribution of primes in various sequences of integers is of critical importance in Number Theory. The study of this distribution uses both multiplicative and additive number theory. Some of the tools utilized include the circle method, exponential sums, sieves, and the zeta function methods. This project will continue earlier work on obtaining lower bounds for pairs of primes in various sequences. The method uses short divisor sums and has connections with all of the aforementioned tools. The investigator will further develop and generalize this method. He will also examine applications to primes in arithmetic progressions and multiple correlations of primes. A related topic is to obtain asymptotic results when averaging is available. In addition, the investigator will study certain problems involving the power sum method; these problems are well suited to an undergraduate institution. This research falls into the general mathematical field of Number Theory. Number theory has its historical roots in the study of the whole numbers, addressing such questions as those dealing with the divisibility of one whole number by another. It is among the oldest branches of mathematics and was pursued for many centuries for purely aesthetic reasons. However, within the last half century it has become an indispensable tool in diverse applications in areas such as data transmission and processing, and communication systems.
Goldston 9626903素数在各种整数序列中的分布在数论中是至关重要的。对这种分布的研究使用了乘法和加法两种数论。使用的一些工具包括圆法、指数和法、筛法和Zeta函数法。这个项目将继续早期关于获得各种序列中的素数对的下界的工作。该方法使用较短的除数和,并与上述所有工具相关联。研究人员将进一步发展和推广这一方法。他还将研究素数在算术级数和素数的多重相关性中的应用。一个相关的主题是当平均化可用时获得渐近结果。此外,研究人员将研究涉及幂和方法的某些问题;这些问题非常适合本科生院校。这项研究属于数论的一般数学领域。数论的历史根源在于对整数的研究,它解决了一些问题,比如一个整数被另一个整数整除的问题。它是数学中最古老的分支之一,出于纯粹的美学原因,人们追寻了许多个世纪。然而,在过去的半个世纪里,它已经成为数据传输和处理以及通信系统等领域的各种应用中不可或缺的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Goldston其他文献
Explicit calculations for Sono’s multidimensional sieve of ?₂-numbers
Sono 多维 ?2 数筛的显式计算
- DOI:
10.1090/mcom/3938 - 发表时间:
2024 - 期刊:
- 影响因子:2
- 作者:
Daniel Goldston;Apoorva Panidapu;Jordan Schettler - 通讯作者:
Jordan Schettler
Daniel Goldston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Goldston', 18)}}的其他基金
Distribution of Prime Numbers and Related Topics
素数分布及相关主题
- 批准号:
1104434 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RUI: Moments of Short Divisor Sums and the Distribution of Primes
RUI:短除数和的矩和素数分布
- 批准号:
0300563 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
RUI: Distribution of Primes and a Higher Correlation Method
RUI:素数分布和更高的相关性方法
- 批准号:
0070777 - 财政年份:2000
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Binary Additive Problems Involving Primes and Other Topics in Analytic Number Theory
数学科学:RUI:涉及素数和解析数论中其他主题的二元加法问题
- 批准号:
9205533 - 财政年份:1992
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Topics in Analytic Number TheoryRelated to the Distribution of Primes
数学科学:RUI:与素数分布相关的解析数论主题
- 批准号:
9003329 - 财政年份:1990
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiplicative and Additive Theory ofPrime Numbers and Related Topics in Analytic Number Theory
数学科学:素数的乘法和加法理论以及解析数论中的相关主题
- 批准号:
8705710 - 财政年份:1987
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening
PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查
- 批准号:
2331502 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES: Practical Inference Algorithms to Detect Hybridization
PRIMES:检测杂交的实用推理算法
- 批准号:
2331660 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES: Enhancing Capacity for Research in Applied Mathematics at Spelman College
PRIMES:增强斯佩尔曼学院应用数学研究能力
- 批准号:
2331890 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES: Researching and Teaching Mathematics of Fairness and Equity
PRIMES:公平与公正数学的研究和教学
- 批准号:
2332232 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
- 批准号:
2331072 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
PRIMES PAIR: Partnering with AIM for Inclusive Research
PRIMES PAIR:与 AIM 合作开展包容性研究
- 批准号:
2331634 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Explicit approaches to L-functions and primes
L 函数和素数的显式方法
- 批准号:
RGPIN-2020-06731 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Distance between primes
素数之间的距离
- 批准号:
572927-2022 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
University Undergraduate Student Research Awards