Cohomology, curvature, classifying spaces and symmetry
上同调、曲率、空间分类和对称性
基本信息
- 批准号:0804226
- 负责人:
- 金额:$ 12.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Leary will continue research on geometric group theory, and geometric topology, both alone and in collaboration. In particular, he will construct infinite groups having strong fixed point properties. This is expected to have application to the study of Kropholler's hierarchy of groups. He will also study a functor that he has developed (from simplicial complexes to locally CAT(0) cubicalcomplexes) that preserves homology. This work should have applications to topology, K-theory and group theory. He will also classify all spaces that can be built by gluing polygons in a certain way that have the `largest possible' groups of symmetries.A group is the mathematician's abstraction of the notion of symmetry:groups measure symmetry in the same way that numbers measure quantity.There are fascinating connections between group theory and geometry.Professor Leary aims to construct groups with surprising combinations of properties, which should lead to new results and insights within both geometry and group theory. He will also classify a family of geometrical objects which generalize the platonic solids, five symmetrical shapes that have been studied for at least four thousand years.
Leary教授将继续研究几何群论和几何拓扑,无论是单独还是合作。 特别是,他将建设无限群具有强大的不动点性质。 这是预期有应用程序的研究克罗福勒的层次结构的群体。 他还将研究一个函子,他已经开发(从单纯复体到局部CAT(0)marticalcomplex),保持同源性。 这项工作应具有应用拓扑结构,K-理论和群论。 他还将分类所有的空间,可以建立胶合多边形在一定的方式,有'最大可能'组的对称性。一个组是数学家的抽象概念的对称性:团体措施的对称性,以同样的方式,数字测量数量。有迷人的联系之间的群论和几何。 他还将对一系列几何对象进行分类,这些几何对象概括了柏拉图固体,这五种对称形状已经被研究了至少4000年。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Leary其他文献
Ian Leary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Leary', 18)}}的其他基金
Cohomology, Finiteness Conditions and Classifying Spaces for Families
上同调、有限性条件和族的分类空间
- 批准号:
0505471 - 财政年份:2005
- 资助金额:
$ 12.59万 - 项目类别:
Continuing Grant
相似国自然基金
离散分析-分形和图上的分析及其应用
- 批准号:11271011
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
共形几何与液晶问题中的偏微分方程
- 批准号:11201223
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 12.59万 - 项目类别:
Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 12.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 12.59万 - 项目类别:
Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216162 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 12.59万 - 项目类别:
Standard Grant














{{item.name}}会员




