Cohomology, Finiteness Conditions and Classifying Spaces for Families

上同调、有限性条件和族的分类空间

基本信息

项目摘要

Professor Leary will continue research on geometric group theory,geometric topology and L2-cohomology, both alone and in collaboration.In particular, he will construct groups for which the classifyingspace for proper actions has surprising finiteness properties. Hewill also develop and study a functor that preserves homology butreplaces an arbitrary topological space by a space admitting anon-positively curved metric. This work should have applications totopology, algebraic K-theory and group theory. Thirdly, he willcontribute to the study of L2-cohomology, by computing this invariantfor a large class of topological spaces, including the complements ofhyperplane arrangements.A group is the mathematician's abstraction of the notionof symmetry: groups measure symmetry in the same way thatnumbers measure quantity. Some of the most interestinggroups arise from geometry, such as the collection ofsymmetries of a tiling of the plane. Professor Learyaims to construct groups that share many of the propertiesof groups coming from tilings, but that cannot arise fromany `tiling' of any space. In a different direction, hehopes to show that some aspects of geometry can be modeled(in a certain precise sense) within the theory of groups.This should lead to new insights within both geometry andgroup theory.
Leary教授将继续研究几何群论,几何拓扑和L2-上同调,无论是单独还是合作。特别是,他将构造群,其适当作用的分类空间具有令人惊讶的有限性属性。 他还将开发和研究一个函子,保持同调,但取代一个任意的拓扑空间的空间承认一个非积极弯曲度量。 这项工作应该有应用totopology,代数K-理论和群论。 第三,他将有助于研究L2-上同调,通过计算这一不变量的一大类拓扑空间,包括补的超平面promisements.A组是数学家的抽象概念的对称性:群测量对称性的方式一样,号码衡量数量。 一些最有趣的群体来自几何学,如平面平铺的对称性集合。 里尔教授的目标是构建群体,这些群体具有来自平铺的群体的许多属性,但不能从任何空间的许多“平铺”中产生。 在另一个方向上,他希望表明几何的某些方面可以在群论中建模(在某种精确的意义上),这将在几何和群论中带来新的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Leary其他文献

Ian Leary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Leary', 18)}}的其他基金

Cohomology, curvature, classifying spaces and symmetry
上同调、曲率、空间分类和对称性
  • 批准号:
    0804226
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Classifying spaces for proper actions and cohomological finiteness conditions of discrete groups.
对离散群的适当作用和上同调有限性条件的空间进行分类。
  • 批准号:
    EP/J016993/1
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Study on finiteness conditions of orbifold models of vertex operator algebras
顶点算子代数轨道模型的有限性条件研究
  • 批准号:
    23740022
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Finiteness Conditions and Index in Semigroups and Monoids
半群和幺半群中的有限性条件和索引
  • 批准号:
    EP/E043194/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Type dimension of modules and certain non-classical finiteness conditions
模块的类型维数和某些非经典有限性条件
  • 批准号:
    194196-1997
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Type dimension of modules and certain non-classical finiteness conditions
模块的类型维数和某些非经典有限性条件
  • 批准号:
    194196-1997
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Type dimension of modules and certain non-classical finiteness conditions
模块的类型维数和某些非经典有限性条件
  • 批准号:
    194196-1997
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Type dimension of modules and certain non-classical finiteness conditions
模块的类型维数和某些非经典有限性条件
  • 批准号:
    194196-1997
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Groups with Finiteness conditions
具有有限性条件的群
  • 批准号:
    5299-1990
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Groups with Finiteness conditions
具有有限性条件的群
  • 批准号:
    5299-1990
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Sciences: Algebras, Polynomial Rings, Finiteness Conditions, Generating Sets and Ideal Contractions in Commutative Algebra
数学科学:代数、多项式环、有限条件、生成集和交换代数中的理想收缩
  • 批准号:
    8122095
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了