Spin-Diffusion in Magnetic Multilayer Structures

磁性多层结构中的自旋扩散

基本信息

  • 批准号:
    0804243
  • 负责人:
  • 金额:
    $ 25.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****Electrons have two properties that make them the prime elements in many electronic devices. These properties are their electrical charge and what is known as electron spin, the fact that they individually produce a magnetic field. It is when all or most of the electron spins are aligned or anti-aligned in an electrically conducting material, a metal, that properties of that material known as ferromagnetism or anti-ferromagnetism exists. This project will investigate how long the spins take to become ordered or disordered from a magnetic state while diffusing through layers of different types of metals. The studies will determine the rate at which the magnetic state relaxes or diffuses through the sample layers. These properties of the material are of high importance to "spintronics". Spintronics is the name of a new type of device operating on the properties of the electron spin and charge rather than just on the charge as is currently used in semiconductor electronics. This project seamlessly integrates educational activities into the research program at all levels of education. In addition outreach efforts to faculty members from historically black colleges and universities (HBCUs) through an existing workshop during the summer months will continue. **** TECHNICAL ABSTRACT****The magnetization relaxation in magnetic multilayer structures is of crucial importance for their application in spintronic devices including read-heads, magnetic random access memories and spin-torque oscillators. A better understanding of the relaxation mechanisms will enable further optimization of the magnetic multilayer structures for spintronic applications. This work will combine the techniques of vector-network analyzer ferromagnetic resonance (VNA-FMR) and shorted waveguide ferromagnetic resonance to obtain information about the magnetization dynamics and the magnetization relaxation in magnetic multilayer structures over a wide frequency range. The three main thrusts of the proposed work are the investigation of the influence of doping on the spin-diffusion in thin copper films, the determination of the interfacial spin-flip probability at metal/metal interfaces and the investigation of spin-diffusion in metallic antiferromagnets. This project seamlessly integrates educational activities into the research program at all levels of education. In addition outreach efforts to faculty members from historically black colleges and universities (HBCUs) through an existing workshop during the summer months will continue.
* 非技术性摘要 * 电子有两种性质,使它们成为许多电子设备中的主要元素。 这些性质是它们的电荷和所谓的电子自旋,即它们各自产生磁场的事实。 当所有或大部分电子自旋在导电材料(金属)中对齐或反对齐时,该材料的特性称为铁磁性或反铁磁性。这个项目将研究自旋从磁性状态变成有序或无序需要多长时间,同时扩散通过不同类型的金属层。 这些研究将确定磁状态在样品层中松弛或扩散的速率。 材料的这些性质对“自旋电子学”非常重要。 自旋电子学是一种新型器件的名称,它是基于电子自旋和电荷的性质而不是像目前半导体电子学中使用的那样仅仅基于电荷。 该项目将教育活动无缝地融入各级教育的研究计划。 此外,将继续在夏季通过现有的讲习班向历史上的黑人学院和大学的教员开展外联工作。* 技术摘要 * 磁性多层结构中的磁化弛豫对于它们在自旋电子器件(包括读头、磁性随机存取存储器和自旋扭矩振荡器)中的应用至关重要。更好地理解弛豫机制将使自旋电子学应用的磁性多层结构的进一步优化。 本工作将联合收割机结合矢量网络分析仪铁磁共振(VNA-FMR)和短波导铁磁共振技术,在较宽的频率范围内获得磁性多层结构的磁化动力学和磁化弛豫信息。 三个主要的工作重点是研究掺杂对铜薄膜自旋扩散的影响,确定金属/金属界面的界面自旋翻转几率,以及研究金属反铁磁体的自旋扩散。 该项目将教育活动无缝地融入各级教育的研究计划。 此外,将继续在夏季通过现有的讲习班向历史上的黑人学院和大学的教员开展外联工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tim Mewes其他文献

Broadband characterization of stress induced anisotropy in nanocomposite Co<sub>74.6</sub>Fe<sub>2.7</sub>Mn<sub>2.7</sub>Nb<sub>4</sub>Si<sub>2</sub>B<sub>14</sub>
  • DOI:
    10.1016/j.jmmm.2019.166307
  • 发表时间:
    2020-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Abhishek Srivastava;Kayla Cole;Alicia Wadsworth;Thomas Burton;Claudia Mewes;Tim Mewes;Gregory B. Thompson;Ronald D. Noebe;Alex M. Leary
  • 通讯作者:
    Alex M. Leary
Magnetization dynamics of amorphous and nanocomposite CoFeMnNbSiB films with the addition of excess cobalt and boron
  • DOI:
    10.1016/j.jmmm.2022.170029
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Prabandha Nakarmi;Alicia Koenig;David Tweddle;Kayla Cole-Piepke;Alex M. Leary;Ronald D. Noebe;Gregory B. Thompson;Claudia Mewes;Tim Mewes
  • 通讯作者:
    Tim Mewes
Measurement Techniques
测量技术
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victorino Franco;Ronald B. Goldfarb;Brad Dodrill;Jeffrey R. Lindemuth;Randy K. Dumas;Tom Hogan;Neil R. Dilley;Michael McElfresh;Thomas Bapu;Sayan Chandra;H. Srikanth;Harry S. Reichard;J. Losby;Vincent T. K. Sauer;Mark R. Freeman;Rudolf Schäfer;Jeffrey McCord;Akira Sugawara;Philip Keller;Cindi L. Dennis;Javier Campo;V. Laliena;Tim Mewes;C. Mewes;Ramon Egli;Dustin Gilbert;Mohammad Reza Zamani;Bethanie J. H. Stadler;Michael E. McHenry;P. Ohodnicki;Seung;Y. Krimer;Satoshi Okamoto;A. García;C. Papusoi;Mrugesh Desai;S. Ruta;R. Chantrell;María Salvador;J. C. Martínez;M. P. Fernández;M. Blanco;Montserrat Rivas
  • 通讯作者:
    Montserrat Rivas
Magnetization dynamics of [Co60Fe40/Pt]5 multilayers synthesized over varying Pt buffer structures
在不同 Pt 缓冲结构上合成的 [Co60Fe40/Pt]5 多层膜的磁化动力学

Tim Mewes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tim Mewes', 18)}}的其他基金

Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    1939999
  • 财政年份:
    2019
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Continuing Grant
CAREER: Magnetization Dynamics and Damping in Magnetic Nanostructures
职业:磁性纳米结构中的磁化动力学和阻尼
  • 批准号:
    0952929
  • 财政年份:
    2010
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
  • 批准号:
    61573012
  • 批准年份:
    2015
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
  • 批准号:
    11126079
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Mapping perception and emotion in the human brain with functional magnetic resonance imaging and diffusion tensor imaging using naturalistic stimuli
使用自然刺激的功能磁共振成像和扩散张量成像来绘制人脑中的感知和情绪
  • 批准号:
    RGPIN-2021-03568
  • 财政年份:
    2022
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Diffusion Magnetic Resonance Imaging Techniques To Investigate White Matter Microstructure in Multiple Sclerosis
开发扩散磁共振成像技术来研究多发性硬化症的白质微观结构
  • 批准号:
    548034-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing a Quantitative Diffusion Magnetic Resonance Imaging Protocol to characterize cellular death and tissue microstructure
开发定量扩散磁共振成像方案来表征细胞死亡和组织微观结构
  • 批准号:
    546780-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Magnetic resonance imaging pulse sequence design for improved diffusion imaging.
用于改进扩散成像的磁共振成像脉冲序列设计。
  • 批准号:
    569669-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Diffusion magnetic resonance imaging techniques for microscopic tissue characterization
用于显微组织表征的扩散磁共振成像技术
  • 批准号:
    RGPIN-2020-04765
  • 财政年份:
    2022
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Discovery Grants Program - Individual
In Vivo Imaging of Cortical Glial Activation Using Advanced Diffusion Magnetic Resonance Imaging
使用先进的扩散磁共振成像对皮质胶质激活进行体内成像
  • 批准号:
    10288188
  • 财政年份:
    2021
  • 资助金额:
    $ 25.4万
  • 项目类别:
Mapping perception and emotion in the human brain with functional magnetic resonance imaging and diffusion tensor imaging using naturalistic stimuli
使用自然刺激的功能磁共振成像和扩散张量成像来绘制人脑中的感知和情绪
  • 批准号:
    DGECR-2021-00297
  • 财政年份:
    2021
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Discovery Launch Supplement
DIFFERENCE: DIFFusion magnetic resonance imaging with Enhanced Resolution ENCoding - Precision Imaging in Cancer
差异:具有增强分辨率编码的扩散磁共振成像 - 癌症精密成像
  • 批准号:
    MR/S031995/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Fellowship
Developing Diffusion Magnetic Resonance Imaging Techniques To Investigate White Matter Microstructure in Multiple Sclerosis
开发扩散磁共振成像技术来研究多发性硬化症的白质微观结构
  • 批准号:
    548034-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mapping perception and emotion in the human brain with functional magnetic resonance imaging and diffusion tensor imaging using naturalistic stimuli
使用自然刺激的功能磁共振成像和扩散张量成像来绘制人脑中的感知和情绪
  • 批准号:
    RGPIN-2021-03568
  • 财政年份:
    2021
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了