CAREER: Magnetization Dynamics and Damping in Magnetic Nanostructures

职业:磁性纳米结构中的磁化动力学和阻尼

基本信息

  • 批准号:
    0952929
  • 负责人:
  • 金额:
    $ 49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

****NON-TECHNICAL ABSTRACT****This Faculty Early CAREER award funds research to investigate magnetization dynamics as well as the damping of the magnetization in magnetic nanostructures. A better understanding of the magnetization dynamics and its damping in magnetic nanostructures is of fundamental importance for the research area of spintronics, which targets the use of a quantum mechanical property of the electron known as "spin" to develop electronic devices with new functionality. In this context the damping of the magnetization will be a key factor, for example, to minimize the overall power consumption of spintronic devices. This project will investigate established material systems as well as new materials, but will also investigate the feasibility of high frequency biosensing using magnetic nanoparticles, which would have a number of possible applications. This project will seamlessly integrate education activities at all levels of education through research experiences for local high-school and undergraduate students and training of graduate students. In addition online educational material pertaining to this CAREER project will be designed and developed and will be made accessible for the general public.****TECHNICAL ABSTRACT****Understanding the magnetization dynamics and damping in magnetic nanostructures is of fundamental importance for many aspects of spintronics, a research area that targets the use of the electron spin to implement new electronic devices. This Faculty Early CAREER award funds research to investigate the magnetization dynamics and damping in magnetic nanostructures. Broadband ferromagnetic resonance techniques will be used to investigate the magnetization dynamics and damping in: (a) ferromagnet/antiferromagnet structures including systems modified using ion irradiation, expected to provide new insights in the role of two-magnon scattering in these structures; (b) new spintronic materials including B2 ordered alloys, aimed at providing guidance for the future development of low damping materials; (c) magnetic nanoparticles, aimed at investigating the feasibility of high frequency biosensing. This project will seamlessly integrate education activities at all levels of education through research experiences for local high-school and undergraduate students and training of graduate students. In addition online educational material pertaining to this CAREER project will be designed and developed and will be made accessible for the general public.
* 非技术摘要 * 该学院早期职业奖资助研究,以调查磁化动力学以及磁性纳米结构中磁化的阻尼。更好地理解磁性纳米结构中的磁化动力学及其阻尼对于自旋电子学的研究领域具有根本的重要性,自旋电子学的目标是使用被称为“自旋”的电子的量子力学性质来开发具有新功能的电子器件。在这种情况下,磁化的阻尼将是一个关键因素,例如,以最大限度地减少自旋电子器件的总功耗。该项目将研究已建立的材料系统以及新材料,但也将研究使用磁性纳米颗粒进行高频生物传感的可行性,这将有许多可能的应用。该项目将通过为当地高中和本科生提供研究经验以及培训研究生,无缝地整合各级教育的教育活动。此外,还将设计和开发与该职业项目有关的在线教育材料,并将向公众开放。*技术摘要 * 理解磁性纳米结构中的磁化动力学和阻尼对于自旋电子学的许多方面具有根本重要性,自旋电子学是一个研究领域,其目标是使用电子自旋来实现新的电子器件。该学院早期职业奖资助研究,以调查磁性纳米结构的磁化动力学和阻尼。宽带铁磁共振技术将用于研究下列材料中的磁化动力学和阻尼:(a)铁磁/反铁磁结构,包括用离子辐照改性的系统,预计将对这些结构中双磁振子散射的作用提供新的认识;(B)新的自旋电子材料,包括B2有序合金,旨在为低阻尼材料的未来发展提供指导;(c)磁性纳米粒子,旨在研究高频生物传感的可行性。该项目将通过为当地高中和本科生提供研究经验以及培训研究生,无缝地整合各级教育的教育活动。此外,还将设计和开发与这一职业项目有关的在线教育材料,供公众使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tim Mewes其他文献

Broadband characterization of stress induced anisotropy in nanocomposite Co<sub>74.6</sub>Fe<sub>2.7</sub>Mn<sub>2.7</sub>Nb<sub>4</sub>Si<sub>2</sub>B<sub>14</sub>
  • DOI:
    10.1016/j.jmmm.2019.166307
  • 发表时间:
    2020-04-15
  • 期刊:
  • 影响因子:
  • 作者:
    Abhishek Srivastava;Kayla Cole;Alicia Wadsworth;Thomas Burton;Claudia Mewes;Tim Mewes;Gregory B. Thompson;Ronald D. Noebe;Alex M. Leary
  • 通讯作者:
    Alex M. Leary
Magnetization dynamics of amorphous and nanocomposite CoFeMnNbSiB films with the addition of excess cobalt and boron
  • DOI:
    10.1016/j.jmmm.2022.170029
  • 发表时间:
    2022-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Prabandha Nakarmi;Alicia Koenig;David Tweddle;Kayla Cole-Piepke;Alex M. Leary;Ronald D. Noebe;Gregory B. Thompson;Claudia Mewes;Tim Mewes
  • 通讯作者:
    Tim Mewes
Measurement Techniques
测量技术
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victorino Franco;Ronald B. Goldfarb;Brad Dodrill;Jeffrey R. Lindemuth;Randy K. Dumas;Tom Hogan;Neil R. Dilley;Michael McElfresh;Thomas Bapu;Sayan Chandra;H. Srikanth;Harry S. Reichard;J. Losby;Vincent T. K. Sauer;Mark R. Freeman;Rudolf Schäfer;Jeffrey McCord;Akira Sugawara;Philip Keller;Cindi L. Dennis;Javier Campo;V. Laliena;Tim Mewes;C. Mewes;Ramon Egli;Dustin Gilbert;Mohammad Reza Zamani;Bethanie J. H. Stadler;Michael E. McHenry;P. Ohodnicki;Seung;Y. Krimer;Satoshi Okamoto;A. García;C. Papusoi;Mrugesh Desai;S. Ruta;R. Chantrell;María Salvador;J. C. Martínez;M. P. Fernández;M. Blanco;Montserrat Rivas
  • 通讯作者:
    Montserrat Rivas
Magnetization dynamics of [Co60Fe40/Pt]5 multilayers synthesized over varying Pt buffer structures
在不同 Pt 缓冲结构上合成的 [Co60Fe40/Pt]5 多层膜的磁化动力学

Tim Mewes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tim Mewes', 18)}}的其他基金

Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    1939999
  • 财政年份:
    2019
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Spin-Diffusion in Magnetic Multilayer Structures
磁性多层结构中的自旋扩散
  • 批准号:
    0804243
  • 财政年份:
    2008
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant

相似海外基金

Study on magnetization dynamics of magnetic beads for advanced bioengineering
先进生物工程磁珠磁化动力学研究
  • 批准号:
    23K17750
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Magnetization dynamics in synthetic antiferromagnets for memory application
用于存储器应用的合成反铁磁体的磁化动力学
  • 批准号:
    22KF0030
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Magnetization and Electron Spin Dynamics of New Molecular 4f Architectures
新型分子 4f 结构的磁化和电子自旋动力学
  • 批准号:
    2247798
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
NSF-BSF: Quantum Magnetization Dynamics in Open Molecular Junctions
NSF-BSF:开放分子结中的量子磁化动力学
  • 批准号:
    2318872
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
  • 批准号:
    2210510
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
  • 批准号:
    560174-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Ultrafast magnetization dynamics at high temperatures
高温下超快磁化动力学
  • 批准号:
    560174-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Magnetization Reversal Dynamics in Rare-Earth Permanent Magnets with Valence Fluctuations
价态波动的稀土永磁体的磁化反转动力学
  • 批准号:
    21K04625
  • 财政年份:
    2021
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel analysis method of spin-torque oscillators for understanding the magnetization dynamics
开发一种新的自旋扭矩振荡器分析方法,以了解磁化动力学
  • 批准号:
    21K20434
  • 财政年份:
    2021
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Evaluation of magnetization dynamics in multicore magnetic nanoparticles for cancer theranostics
用于癌症治疗诊断的多核磁性纳米粒子的磁化动力学评估
  • 批准号:
    20H02163
  • 财政年份:
    2020
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了