Effects of Nanoscale Grain Boundary Composition Fluctuations on Mechanical Behavior of Metals and Alloys

纳米级晶界成分波动对金属和合金力学行为的影响

基本信息

  • 批准号:
    0804528
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL: Changes in the local composition of metals and alloys are key to many fundamental aspects of materials science and engineering (MS&E). These variations may be large in compositional difference, but they are usually small in spatial extent, often occurring over a nanometer or less. When composition fluctuations are associated with defects in polycrystalline materials, they may induce deleterious property changes, such as the catastrophic brittle failure of metals and alloys via, for example, hydrogen-, temper-, or irradiation-enhanced embrittlement. Until recently, it has not been possible to measure these composition changes directly and relate them to the mechanical behavior, the crystallography, the electronic structure, and the defect structure of the material. However, such measurements are now possible. In a previous NSF grant, the PI has developed methods for mechanical testing of small volumes of material, including samples that can contain a single grain boundary. In two prior NSF grants, the co-PI has participated in the acquisition of two aberration-corrected transmission electron microscopes (TEMs) and has developed computer-processing methods to detect and quantify sub-nanometer scale composition changes at large numbers of grain boundaries (GBs) and precipitates. Initial data have been obtained in model systems and commercial alloys. The objective of this project is to explore and accurately quantify nanoscale composition changes associated with GB segregation in metals and alloys, and to establish the connections between GB character and mechanical behavior through direct testing and through modeling. The assembled team of international collaborators has combined skills that will enhance understanding of the complex interplay between GB crystallography and local chemistry via a unique combination of the most advanced electron microscopy/spectroscopy and 3D atom-probe methods with the latest first-principles simulations and in-situ mechanical testing techniques. The research will generate hitherto-unobtainable composition and mechanical behavior data associated with grain-boundary segregation, selecting specific interfaces from hundreds or even thousands that can now be analyzed for the first time. NON-TECHNICAL: The broader impact of this research will arise through the potential to revise the basic understanding of the role of composition variations on segregation and mechanical properties, which are central to the education and training of all MS&E students. These latest advances in materials characterization will enhance the research and education infrastructure and will be taught to many classes of Lehigh students and hundreds of industrial attendees at Lehigh?s Annual Microscopy School, now in its 38th year. The results will be disseminated to the materials community through technical presentations, publications and a new textbook. Improvements in the measurement of nanoscale elemental changes in metals and alloys have the potential to modify basic theories of segregation, and will lay the groundwork for similar studies of precipitation in the future. In turn, this knowledge may permit the re-design of standard fabrication and processing methods that control the properties of materials. Thus the long-term result may affect society in the broadest sense through improved metals and alloys for the physical infrastructure, the hydrogen economy, aerospace and automobiles.
技术:金属和合金局部成分的变化是材料科学与工程(MS E)许多基本方面的关键。这些变化在成分上可能很大,但在空间范围上通常很小,通常发生在纳米或更小的范围内。当成分波动与多晶材料中的缺陷相关时,它们可能会引起有害的性能变化,例如金属和合金的灾难性脆性失效,例如氢、回火或辐射增强的脆化。直到最近,还不可能直接测量这些组成变化,并将它们与材料的机械行为、晶体学、电子结构和缺陷结构联系起来。然而,这样的测量现在是可能的。在之前的NSF资助中,PI开发了小体积材料的机械测试方法,包括可能包含单个晶界的样品。在两个先前的NSF赠款,共同PI参与了两个像差校正透射电子显微镜(TEM)的收购,并开发了计算机处理方法,以检测和量化大量的晶界(GB)和沉淀物的亚纳米尺度的组成变化。已经在模型系统和商业合金中获得了初始数据。该项目的目标是探索和准确量化与GB偏析相关的纳米级成分变化,并通过直接测试和建模建立GB特性和机械行为之间的联系。组装的国际合作者团队结合了技能,通过最先进的电子显微镜/光谱学和3D原子探针方法与最新的第一原理模拟和原位机械测试技术的独特组合,增强了对GB晶体学和当地化学之间复杂相互作用的理解。这项研究将产生迄今无法获得的与晶界偏析相关的成分和机械行为数据,从数百甚至数千个界面中选择特定的界面,现在可以首次进行分析。非技术性:这项研究的更广泛的影响将出现通过潜在的修改成分变化对隔离和机械性能的作用的基本理解,这是中央的教育和所有MS& E学生的培训。这些材料表征的最新进展将加强研究和教育基础设施,并将被教授给许多类利哈伊学生和数百名工业与会者在利哈伊?的年度显微镜学校,现在在其第38年。研究结果将通过技术介绍、出版物和新教科书向材料界传播。金属和合金中纳米级元素变化测量的改进有可能修改偏析的基本理论,并将为未来类似的沉淀研究奠定基础。反过来,这些知识可以允许重新设计控制材料性能的标准制造和加工方法。因此,长期的结果可能会影响社会在最广泛的意义上通过改善金属和合金的物理基础设施,氢经济,航空航天和汽车。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Vinci其他文献

Richard Vinci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Vinci', 18)}}的其他基金

Correlating Grain Boundary Character to Micro-Fracture in Transparent Ceramic Materials
将晶界特性与透明陶瓷材料中的微裂纹相关联
  • 批准号:
    1436585
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Viscoelastic and Viscoplastic Behavior of Thin Metal Films for MEMS
MEMS 金属薄膜的粘弹性和粘塑性行为
  • 批准号:
    1332574
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Structure and Micro-Fracture Testing of Single Grain Boundaries in Ceramics
陶瓷单晶界的结构和微断裂测试
  • 批准号:
    1131408
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an Atomic Force Microscope (AFM) for Visualization, Assembly, and Analysis of Materials at the Nanometer and Molecular Scale
MRI:获取原子力显微镜 (AFM),用于纳米和分子尺度材料的可视化、组装和分析
  • 批准号:
    0923066
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
2008 Thin Film And Small Scale Mechanical Behavior Gordon Research Conference; Colby College, Waterville, Maine; July 27 to 1 August, 2008
2008年薄膜和小尺度机械行为戈登研究会议;
  • 批准号:
    0820870
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
A Micromachined Device for Mechanical Testing of Nano-scale Materials and Structures
用于纳米级材料和结构机械测试的微机械装置
  • 批准号:
    0322702
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing grant
CAREER: Cyclic Plasticity and Fatigue Life of Small-Scale Metal Structures
职业:小型金属结构的循环塑性和疲劳寿命
  • 批准号:
    9876261
  • 财政年份:
    1999
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing grant

相似海外基金

Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
  • 批准号:
    2415310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
  • 批准号:
    2339015
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Picometre Surface Nanoscale Axial Photonics (PicoSNAP)
皮米表面纳米级轴向光子学 (PicoSNAP)
  • 批准号:
    EP/X03772X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
  • 批准号:
    BB/Y51391X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
REU Site: The Physics of Waves from the Nanoscale to the Cosmic Scale
REU 站点:从纳米尺度到宇宙尺度的波物理学
  • 批准号:
    2349426
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
  • 批准号:
    LE240100092
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials
职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率
  • 批准号:
    2338613
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了