Modeling and Evolution of Biological Networks
生物网络的建模和演化
基本信息
- 批准号:0804721
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports theoretical research and education in modeling and evolution of biological networks. The research undertaken addresses evolution of genetic patterns using theoretical models that represent the genetic code and the changes that are possible while selecting changes as favorable with a ''fitness function.'' The theoretical approach draws on analogies with learning models in Computer Science and optimization in Statistical Physics. This theoretical machinery predicts biological networks by how rapidly they can be learned from the random examples provided by mutation and selection. The approach assumes the networks in living things can be built incrementally and grow continually by stepwise increases in fitness. They are not necessarily global optimum. Network evolution will be modeled with simplified differential equations for the central molecular components of developmental pathways, e.g., transcription factors, ligand-receptors interactions, protein-protein complexes, kinases and phosphorylated proteins etc. Evolution requires a fitness function and rapid evolution is facilitated by a smooth monotone function, not a jagged landscape. This is in accord with the goal of evolving patterning networks common to all animals, not specific phyla. A plausible fitness function quantifies how well embryonic position is related to gene expression patterns. This research follows a preliminary application of these ideas to periodic segmentation in animals (somitogenesis) where the earliest versions of the approach found an encouraging degree of success.The effort undertaken has broader impacts with both scientific and educational consequences. The research, employing the approaches from a condensed matter physics perspective, takes place at Rockefeller University in an environment focused on biological studies. Graduate students involved in the research gain a unique interdisciplinary education with the foundations of theoretical physics immersed in the research environment of biological sciences. The research makes contributions to the scientific community beyond publishing and the usual forms of dissemination. The bioinformatics tools employed in the modeling and analysis are packaged into web sites for broad dissemination. The relevance of the tools developed to real world medicine were illustrated in a paper where this group collaborated in tracking the evolution of drug resistant Staphylococcus aureus (''Super bugs'') in a human patient by whole genome resequencing.NONTECHNICAL SUMMARY:This award supports theoretical research and education in modeling and evolution of biological networks. The research models evolution of genetic patterns using theoretical models that represent the genetic code and the changes that are possible while selecting changes as favorable with a ''fitness function.'' The theoretical approach draws on analogies with learning models in Computer Science and optimization in Statistical Physics. This theoretical machinery predicts biological networks based on how rapidly they can be learned from the random examples provided by mutation and selection. The approach assumes the networks deployed in living things can be built incrementally and grow continually by stepwise increases in fitness. They are not necessarily global optimum. Network evolution will be modeled with simplified equations for the central molecular components of developmental pathways. This research follows a preliminary application of these ideas to periodic segmentation in animals (somitogenesis) where the earliest versions of the approach found an encouraging degree of success.The effort undertaken has broader impacts with both scientific and educational consequences. The research, employing the approaches from a condensed matter physics perspective, takes place at Rockefeller University in an environment focused on biological studies. Graduate students involved in the research gain a unique interdisciplinary education with the foundations of theoretical physics immersed in the research environment of biological sciences. The research makes contributions to the scientific community beyond publishing and the usual forms of dissemination. The bioinformatics tools employed in the modeling and analysis are packaged into web sites for broad dissemination. The relevance of the tools developed to real world medicine were illustrated in a paper where this group collaborated in tracking the evolution of drug resistant Staphylococcus aureus (''Super bugs'') in a human patient by whole genome resequencing.
该奖项支持生物网络建模和进化方面的理论研究和教育。进行的研究使用理论模型来解决遗传模式的进化问题,这些模型代表了遗传密码和可能的变化,同时选择具有“适应度函数”的有利变化。理论方法借鉴了计算机科学中的学习模型和统计物理学中的优化。这种理论机器通过从突变和选择提供的随机样本中学习生物网络的速度来预测生物网络。该方法假设生物中的网络可以逐步建立,并通过逐步增加适应度而不断增长。它们不一定是全局最优的。网络进化将用发育途径的中心分子组分的简化微分方程来建模,例如,转录因子、配体-受体相互作用、蛋白质-蛋白质复合物、激酶和磷酸化蛋白质等。进化需要适应度函数,并且快速进化由平滑的单调函数而不是锯齿状的景观促进。这与进化所有动物而不是特定门共有的模式网络的目标是雅阁的。一个合理的适应度函数量化了胚胎位置与基因表达模式的关系。本研究遵循这些想法的初步应用,在动物的周期分割(体节发生)的最早版本的方法发现了令人鼓舞的成功程度。所进行的努力具有更广泛的影响与科学和教育的后果。这项研究从凝聚态物理学的角度采用了这些方法,在洛克菲勒大学的一个专注于生物研究的环境中进行。参与研究的研究生获得了独特的跨学科教育,理论物理学的基础沉浸在生物科学的研究环境中。这项研究对科学界的贡献超出了出版和通常的传播形式。建模和分析中使用的生物信息学工具被打包到网站中,以供广泛传播。 在一篇论文中,该团队合作通过全基因组重测序追踪人类患者体内耐药金黄色葡萄球菌(“超级细菌”)的进化,说明了所开发的工具与真实的世界医学的相关性。非技术性总结:该奖项支持生物网络建模和进化方面的理论研究和教育。该研究使用理论模型模拟遗传模式的进化,这些模型代表遗传密码和可能的变化,同时选择具有“适应度函数”的有利变化。理论方法借鉴了计算机科学中的学习模型和统计物理学中的优化。 这种理论机器根据突变和选择提供的随机样本学习生物网络的速度来预测生物网络。该方法假设生物中部署的网络可以通过逐步增加适应度来逐步构建并持续增长。它们不一定是全局最优的。 网络进化将模拟与简化方程的发展途径的中心分子组成部分。本研究遵循这些想法的初步应用,在动物的周期分割(体节发生)的最早版本的方法发现了令人鼓舞的成功程度。所进行的努力具有更广泛的影响与科学和教育的后果。这项研究从凝聚态物理学的角度采用了这些方法,在洛克菲勒大学的一个专注于生物研究的环境中进行。参与研究的研究生获得了独特的跨学科教育,理论物理学的基础沉浸在生物科学的研究环境中。 这项研究对科学界的贡献超出了出版和通常的传播形式。建模和分析中使用的生物信息学工具被打包到网站中,以供广泛传播。 在一篇论文中说明了开发的工具与真实的世界医学的相关性,该小组合作通过全基因组重测序跟踪人类患者中耐药金黄色葡萄球菌(“超级细菌”)的进化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Siggia其他文献
Nucleosome Depleted Region In Promoter Improves Robustness In Gene Expression
- DOI:
10.1016/j.bpj.2008.12.3715 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Lu Bai;Gilles Charvin;Eric Siggia;Frederick Cross - 通讯作者:
Frederick Cross
Eric Siggia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Siggia', 18)}}的其他基金
Collaborative Research: Rational Design of Anticancer Drug Combinations using Dynamic Multidimensional Theory
合作研究:利用动态多维理论合理设计抗癌药物组合
- 批准号:
1545838 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Workshop on the Physical Aspects of Cellular Organization to be held on August 11-September 5, 1997, at the Aspen Center for Physics, Aspen Colorado.
关于细胞组织的物理方面的研讨会将于 1997 年 8 月 11 日至 9 月 5 日在科罗拉多州阿斯彭的阿斯彭物理中心举行。
- 批准号:
9722061 - 财政年份:1997
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Fellowship
Determining the dynamics of the colonization of the pelagic realm and evolution of the early Palaeozoic biological pump
确定远洋领域殖民的动态和早古生代生物泵的演化
- 批准号:
NE/X017745/1 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Fellowship
REU Site: Ecology, Evolution, and Behavior Field Research at Mountain Lake Biological Station
REU 站点:山湖生物站的生态、进化和行为领域研究
- 批准号:
2349462 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Biological diversity and evolution in the early earth
早期地球的生物多样性和进化
- 批准号:
23H00136 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mechanical response of bone under the light of biological evolution
生物进化视角下骨骼的机械响应
- 批准号:
23K08670 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the current state of Japanese education on biological evolution and development of new teaching materials
日本生物进化教育现状评价及新教材开发
- 批准号:
23K02819 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Adaptive evolution across multi-scale biological systems: finding a bridge between molecular evolution and multi-species dynamics.
跨多尺度生物系统的适应性进化:寻找分子进化和多物种动力学之间的桥梁。
- 批准号:
RGPIN-2020-04109 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Evolution of key biological characteristics in dinosaurs and their relatives
恐龙及其近亲关键生物学特征的进化
- 批准号:
RGPIN-2017-06246 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




