Collaborative Research: Rational Design of Anticancer Drug Combinations using Dynamic Multidimensional Theory
合作研究:利用动态多维理论合理设计抗癌药物组合
基本信息
- 批准号:1545838
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is part of the NSF effort to promote significant advances in the fundamental understanding of cancer biology made possible through multidisciplinary research that involves experts in theoretical physics, applied mathematics, and computer science.Achieving durable control of metastatic solid tumors will require high-order targeted therapeutic combinations, because single-agent therapeutics eventually become thwarted by the development of tumor drug resistance. However, design of combinatorial regimens cannot be done by empirical trial and error in the clinical setting. The goal of the project is to blend a systems biology network-based theoretical framework with an integrated experimental and analytical program in order to address the combinatorial regimen challenge in oncology. Based on areas of exemplary clinical need, investigator expertise, and the availability of patient-derived tumor tissue, the project will focus on BRAF-mutant melanoma and PIK3CA-mutant, estrogen receptor positive (ER+) breast cancer as initial tumor types in which to pilot the approach. In addition the project will offer interdisciplinary training and research experience to postdoctoral and clinical fellows, graduate students, and indirectly to all members of the groups who participate. Professional development of all trainees will be enhanced by yearly meetings of the whole project team which will include tutorials on modeling and experimental methodologies. A symposium on the quantitative science of cancer will be organized at the Dana Farber Cancer Institute during the third year of this project. Team members are also committed to broadening the participation of women and under-represented minorities in STEM fields by pro-active recruitment and mentoring.The project will integrate dynamic modeling of signal transduction pathways relevant to cell proliferation and apoptosis, genomic and evolutionary analyses of tumor cells, and systematic cell death and therapeutic resistance studies. The dynamic models will be informed, tested, and iterated using experimental approaches applied to relevant cancer model systems. The experiments leverage emerging technologies such as pooled genome-wide open reading frame screens, dynamic BH3 profiling of cancer cells' closeness to the apoptotic threshold, whole exome sequencing and single cell RNA-seq analysis. The models will recapitulate steady state signaling network activation, acute adaptive effects of treatment (e.g., feedback dysregulation) and the range of drug-resistant states that may emerge following longer-term drug exposure. Tumor cell heterogeneity will be represented by the implementation of different initial configurations or state overrides of network components. Using newly developed systems control methodologies, the models will be used to prioritize drug combinations and dosing/scheduling principles for in vitro and in vivo testing. The final result will be a theoretical and experimentally validated approach that can be generalized across many other cancer types. This project develops a new framework to address cancer as a deregulated complex dynamical system and it will lead to an improved understanding of adaptive and acquired drug resistance mechanisms. The project will make a significant contribution toward a major goal of cancer precision medicine, namely the identification of optimal high-order combinations for individual cancer patients. The project will also establish new connections between evolutionary theory and dynamical systems theory. The theoretical and methodological advances will be applicable or adaptable to other cancers and diseases in general, leading to potentially transformative impacts on human health. This proposal is cofunded by the Physics of Living Systems Program in the Physics Division and the Systems and Synthetic Biology Program in the Molecular and Cellular Biosciences Division.
这一奖项是NSF努力促进癌症生物学基础理解取得重大进展的努力的一部分,通过涉及理论物理、应用数学和计算机科学的多学科研究。实现对转移性实体肿瘤的持久控制将需要高阶靶向治疗组合,因为单一药物治疗最终会因肿瘤耐药性的发展而受阻。然而,联合方案的设计不能在临床环境中通过经验试验和错误来完成。该项目的目标是将基于网络的系统生物学理论框架与综合实验和分析方案相结合,以应对肿瘤学中的组合方案挑战。基于典型的临床需求、研究人员的专业知识和患者来源的肿瘤组织的可用性,该项目将专注于BRAF突变黑色素瘤和PIK3CA突变、雌激素受体阳性(ER+)乳腺癌作为试验该方法的初始肿瘤类型。此外,该项目将向博士后和临床研究员、研究生提供跨学科培训和研究经验,并间接向参与该小组的所有成员提供培训和研究经验。所有受训人员的专业发展将通过整个项目小组的年度会议得到加强,会议将包括关于建模和实验方法的教程。在该项目的第三年期间,将在Dana Farber癌症研究所组织一次关于癌症定量科学的专题讨论会。团队成员还致力于通过积极主动的招募和指导,扩大妇女和未被充分代表的少数群体在STEM领域的参与。该项目将整合与细胞增殖和凋亡相关的信号转导途径的动态建模、肿瘤细胞的基因组和进化分析,以及系统的细胞死亡和治疗耐药性研究。动态模型将使用应用于相关癌症模型系统的实验方法进行通知、测试和迭代。这些实验利用了新兴技术,如集合全基因组开放阅读框架筛选、癌细胞接近凋亡阈值的动态BH3图谱、整个外显子组测序和单细胞RNA-seq分析。这些模型将概括稳态信号网络激活、治疗的急性适应效应(例如,反馈失调)以及长期药物暴露后可能出现的耐药状态的范围。肿瘤细胞的异质性将通过实施不同的初始配置或网络组件的状态覆盖来表示。使用新开发的系统控制方法,这些模型将用于确定体外和体内试验的药物组合和剂量/调度原则的优先顺序。最终的结果将是一种理论和实验验证的方法,可以在许多其他癌症类型中推广。这个项目开发了一个新的框架,将癌症作为一个解除管制的复杂动力系统来处理,它将导致对适应性和获得性耐药机制的更好理解。该项目将为癌症精准医学的一个主要目标做出重大贡献,即为个别癌症患者识别最佳高阶组合。该项目还将在进化论和动力系统理论之间建立新的联系。理论和方法上的进步将适用于或适用于其他癌症和疾病,从而对人类健康产生潜在的变革性影响。这项提案由物理部的生命系统物理学项目和分子和细胞生物科学部的系统和合成生物学项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Siggia其他文献
Nucleosome Depleted Region In Promoter Improves Robustness In Gene Expression
- DOI:
10.1016/j.bpj.2008.12.3715 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Lu Bai;Gilles Charvin;Eric Siggia;Frederick Cross - 通讯作者:
Frederick Cross
Eric Siggia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Siggia', 18)}}的其他基金
Modeling and Evolution of Biological Networks
生物网络的建模和演化
- 批准号:
0804721 - 财政年份:2008
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
Workshop on the Physical Aspects of Cellular Organization to be held on August 11-September 5, 1997, at the Aspen Center for Physics, Aspen Colorado.
关于细胞组织的物理方面的研讨会将于 1997 年 8 月 11 日至 9 月 5 日在科罗拉多州阿斯彭的阿斯彭物理中心举行。
- 批准号:
9722061 - 财政年份:1997
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
- 批准号:
2323989 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243665 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243667 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2403970 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
- 批准号:
2323988 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243666 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312001 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
- 批准号:
2210868 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
- 批准号:
2210760 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant














{{item.name}}会员




