Reliability Inference and Degradation Modeling based on a Class of Nonhomogeneous Levy Processes
基于一类非齐次Levy过程的可靠性推断与退化建模
基本信息
- 批准号:0805031
- 负责人:
- 金额:$ 5.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to study semiparametric likelihood inference of some nonhomogeneous Levy processes for degradation data. In some studies where the subjects are put on test at time zero, these subjects degrade over time. Failure is defined as the time when the amount of degradation reaches a pre-specified critical level. Data of this type are called degradation data. The setting for observed data is one on which n independent units, each with a nonhomogeneous Levy process with common shape function and scale parameter, are observed at several possibly different times during the study. The difficulty is that unknown parameters of these processes include a monotone function and a finite dimensional parameter and also the data themselves are correlated. The investigator studies the maximum likelihood estimator (MLE) and maximum pseudo-likelihood estimator (MPLE) of the unknown parameters and develops efficient algorithms to compute both the MLE and the MPLE. Asymptotic properties of these estimators including consistency, convergence rate and asymptotic distribution are established. Related problems, including semiparametric inference of models with random effects and/or time-independent covariates, joint modeling of failure time data and degradation data, and a variation of the Neyman-Scott problem on variance estimation are also investigated.Traditional analysis in reliability focuses on collecting and modeling failure time data. This poses difficulties in high-reliability applications where there are few failures. Advances in sensing technologies are making it possible to collect extensive amount of data on degradation associated with systems and components. The degradation modeling allows the manufactures to obtain the reliability information required in a timely manner such that they can make effective business decisions regarding warranty periods or demonstrate that the product meets the customer's reliability specifications. The proposed work develops a class of flexible models to analyze the degradation data and has direct applications in industrial engineering and AIDS patients' immune system study, as it formulates real degradation data. The investigator develops numerical software in the forms of R and/or MATLAB for degradation analysis for public use through the internet.
本文研究退化数据的非齐次Levy过程的半参数似然估计。在一些研究中,受试者在零时间进行测试,这些受试者随着时间的推移而退化。失效定义为降解量达到预定临界水平的时间。这种类型的数据称为退化数据。观测数据的设置是一个n个独立的单元,每个单元都有一个非齐次Levy过程,具有共同的形状函数和尺度参数,在研究过程中,在几个可能不同的时间观察。困难在于这些过程的未知参数包括单调函数和有限维参数,并且数据本身是相关的。研究者研究了未知参数的极大似然估计(MLE)和极大伪似然估计(MPLE),并开发了计算MLE和MPLE的有效算法。建立了估计量的渐近性质,包括相合性、收敛速度和渐近分布。本文还研究了相关问题,包括随机效应和/或时间无关协变量模型的半参数推断、失效时间数据和退化数据的联合建模以及方差估计的Neyman-Scott问题的一种变形。这在几乎没有故障的高可靠性应用中造成了困难。传感技术的进步使得收集与系统和组件相关的大量退化数据成为可能。退化建模允许制造商以及时的方式获得所需的可靠性信息,使得他们可以做出关于保修期的有效商业决策或证明产品满足客户的可靠性规范。拟议的工作开发了一类灵活的模型来分析降解数据,并直接应用于工业工程和艾滋病患者的免疫系统研究,因为它制定了真实的降解数据。调查员开发R和/或MATLAB形式的数值软件,用于通过互联网进行公众使用的退化分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Wang其他文献
Morphological Observation of the Cashmere Goat Fetal Fibroblasts after mTOR Kinase Inhibition with Combination of Fluorescent Dyes and Confocal Cell Imaging
荧光染料与共聚焦细胞成像相结合抑制 mTOR 激酶后绒山羊胎儿成纤维细胞的形态观察
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yan Liang;Xiao Wang;Shu;Cheberi;Zhi Gang Wang;Dongjun Liu - 通讯作者:
Dongjun Liu
Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms
零价铁去除金属(类)氧阴离子的进展:动力学、途径和机制
- DOI:
10.1016/j.chemosphere.2021.130766 - 发表时间:
2021 - 期刊:
- 影响因子:8.8
- 作者:
Xiao Wang;Yue Zhang;Zhiwei Wang;Chunhua Xu;Paul G. Tratnyek - 通讯作者:
Paul G. Tratnyek
Numerical simulation of laser impact spot welding
激光冲击点焊的数值模拟
- DOI:
10.1016/j.jmapro.2018.08.028 - 发表时间:
2018-10 - 期刊:
- 影响因子:6.2
- 作者:
Xiao Wang;Meng Shao;Shuai Gao;Jenn-Terng Gau;Heng Tang;Hao Jin;Huixia Liu - 通讯作者:
Huixia Liu
Dietary valine levels affect growth, protein utilisation, immunity and antioxidant status in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
膳食缬氨酸水平影响幼年杂交石斑鱼(Epinephelus fuscoguttatus — — Epinephelus lanceolatus —)的生长、蛋白质利用、免疫和抗氧化状态
- DOI:
10.1017/s0007114520002858 - 发表时间:
2020-07 - 期刊:
- 影响因子:3.6
- 作者:
Zhiyu Zhou;Xiaoyi Wu;Delbert M. Gatlin III;Xiao Wang;Wei Mu;Bo Ye;Lei Ma - 通讯作者:
Lei Ma
Engineering WS2 exciton polarization by an anisotropic organic substrate
通过各向异性有机基底工程 WS2 激子极化
- DOI:
10.1063/5.0094819 - 发表时间:
2022-09 - 期刊:
- 影响因子:3.2
- 作者:
Zhiyuan An;Qiang Ai;Haitao Chen;Xiao Wang;Tingge Gao - 通讯作者:
Tingge Gao
Xiao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Wang', 18)}}的其他基金
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
- 批准号:
2318975 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
CAREER: Pushing the Practicality of Secure Multiparty Computation
职业:推动安全多方计算的实用性
- 批准号:
2236819 - 财政年份:2023
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
Prediction Models Based on Large Scale Image Data
基于大规模图像数据的预测模型
- 批准号:
1613060 - 财政年份:2016
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Mathematics of Synthetic Gene Networks
合成基因网络的数学
- 批准号:
1100309 - 财政年份:2011
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
Collaborative Research: A Constrained Optimal Control Approach to Nonparametric Estimation with Applications to Biological, Biomedical and Engineering Systems
协作研究:非参数估计的约束最优控制方法及其在生物、生物医学和工程系统中的应用
- 批准号:
1030246 - 财政年份:2010
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Estimation of Nonlinear Components and Disturbances in Dynamical Systems with Applications to Threat Detection
ATD:协作研究:动态系统中非线性分量和扰动的估计及其在威胁检测中的应用
- 批准号:
1042967 - 财政年份:2010
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
相似海外基金
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant
Designing Interaction Freedom via Active Inference
通过主动推理设计交互自由度
- 批准号:
EP/Y029178/1 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Research Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Research Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 5.95万 - 项目类别:
Continuing Grant