Mathematics of Synthetic Gene Networks

合成基因网络的数学

基本信息

  • 批准号:
    1100309
  • 负责人:
  • 金额:
    $ 68.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

This project uses the combination of mathematical, engineering, and biological techniques to construct, monitor, and analyze novel engineered gene networks. The objective of the research is to expand the mathematical framework used in the modeling and analysis of synthetic gene networks. First, the investigators systematically study stochasticity at separatrices of bistable synthetic gene networks. Recently developed yeast bistable gene networks are used for the first time to initialize gene networks on their separatrices. In particular, the difference between Gillespie algorithm and Chemical Langevin equation (CLE) based algorithms in simulating stochastic processes near bifurcation points is investigated, both analytically and experimentally. With the experience in studying bistable systems, the next step is to mathematically and experimentally analyze nonlinear stochastic dynamics in three potential well systems. Nonlinear stochastic dynamics in multi potential well systems have not been well studied. This network is constructed using available, well-characterized components and techniques and by combining microfluidics devices, single cell live imaging and stochastic modeling to observe and study noise induced random state switching. Finally, methods of high dimensional analysis of gene networks are developed. Tools for dynamical analysis of high dimensional gene networks have been lacking. This project develops mathematical methods to expand the analysis of gene networks from two dimensions into higher dimensionalities. High throughput network identification methods that utilize parallel computing are developed. Bifurcation analysis of high dimensional dynamical systems with applications in gene networks is tested. Novel systematic understanding of cell differentiation and reprogramming derives from the study of synthetic multistable gene networks. Synthetic multistable systems provide unique opportunities to study the core mechanisms of cell pluripotency and differentiation because highly connected small transcription networks regulating cell differentiation have topological similarities with the synthetic gene networks under consideration in this project. Constructing and analyzing small multistable gene network deepens our understanding of multistability, which can arise from similar topologies in stem cell gene regulations. Additionally, mathematical theories and tools to study high dimensional nonlinear dynamics and stochasticity in the context of gene networks are developed. Currently, theoretical efforts to study cellular multistable systems are lacking. This research fills the gap between technological progress and available analytical tools to facilitate future biotechnological development. In addition, both undergraduate and graduate students carry out synthetic biology experiments and analysis. By participating in the international Genetically Engineered Machine (iGEM) competition, these students promote developments of modern biological technologies at Arizona State University. K-12 students and teachers in the Phoenix metropolitan area will also have opportunities to participate in cutting-edge research activities with scientific and infrastructure support from the principal investigators and the university.
这个项目结合了数学、工程和生物技术来构建、监测和分析新的工程基因网络。该研究的目的是扩展用于合成基因网络建模和分析的数学框架。首先,研究者系统地研究了双稳态合成基因网络在分离点上的随机性。利用近年来发展起来的酵母双稳态基因网络,首次在酵母双稳态基因网络的分离层上进行基因网络的初始化。特别研究了Gillespie算法与基于化学朗格万方程(Chemical Langevin equation, CLE)的算法在模拟分岔点附近随机过程方面的差异。有了研究双稳系统的经验,下一步是对三个势井系统的非线性随机动力学进行数学和实验分析。多势井系统的非线性随机动力学还没有得到很好的研究。该网络是利用现有的、特性良好的组件和技术,结合微流体设备、单细胞实时成像和随机建模来观察和研究噪声引起的随机状态切换。最后,提出了基因网络的高维分析方法。对高维基因网络进行动态分析的工具一直缺乏。该项目发展数学方法,将基因网络的分析从二维扩展到更高的维度。提出了基于并行计算的高吞吐量网络识别方法。测试了高维动力系统的分岔分析在基因网络中的应用。对细胞分化和重编程的新系统理解源于对合成多稳定基因网络的研究。合成多稳定系统为研究细胞多能性和分化的核心机制提供了独特的机会,因为调节细胞分化的高度连接的小转录网络与本项目中考虑的合成基因网络具有拓扑相似性。构建和分析小的多稳定基因网络加深了我们对干细胞基因调控中类似拓扑结构产生的多稳定性的理解。此外,在基因网络的背景下,研究高维非线性动力学和随机性的数学理论和工具得到了发展。目前,对细胞多稳定系统的理论研究还很缺乏。这项研究填补了技术进步和现有分析工具之间的空白,促进了未来生物技术的发展。此外,本科生和研究生都进行合成生物学实验和分析。通过参加国际基因工程机器(iGEM)竞赛,这些学生促进了亚利桑那州立大学现代生物技术的发展。凤凰城市区的K-12学生和教师也将有机会在主要研究人员和大学的科学和基础设施支持下参与尖端研究活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Wang其他文献

Morphological Observation of the Cashmere Goat Fetal Fibroblasts after mTOR Kinase Inhibition with Combination of Fluorescent Dyes and Confocal Cell Imaging
荧光染料与共聚焦细胞成像相结合抑制 mTOR 激酶后绒山羊胎儿成纤维细胞的形态观察
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Liang;Xiao Wang;Shu;Cheberi;Zhi Gang Wang;Dongjun Liu
  • 通讯作者:
    Dongjun Liu
Advances in metal(loid) oxyanion removal by zerovalent iron: Kinetics, pathways, and mechanisms
零价铁去除金属(类)氧阴离子的进展:动力学、途径和机制
  • DOI:
    10.1016/j.chemosphere.2021.130766
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Xiao Wang;Yue Zhang;Zhiwei Wang;Chunhua Xu;Paul G. Tratnyek
  • 通讯作者:
    Paul G. Tratnyek
Numerical simulation of laser impact spot welding
激光冲击点焊的数值模拟
  • DOI:
    10.1016/j.jmapro.2018.08.028
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xiao Wang;Meng Shao;Shuai Gao;Jenn-Terng Gau;Heng Tang;Hao Jin;Huixia Liu
  • 通讯作者:
    Huixia Liu
Dietary valine levels affect growth, protein utilisation, immunity and antioxidant status in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
膳食缬氨酸水平影响幼年杂交石斑鱼(Epinephelus fuscoguttatus — — Epinephelus lanceolatus —)的生长、蛋白质利用、免疫和抗氧化状态
  • DOI:
    10.1017/s0007114520002858
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zhiyu Zhou;Xiaoyi Wu;Delbert M. Gatlin III;Xiao Wang;Wei Mu;Bo Ye;Lei Ma
  • 通讯作者:
    Lei Ma
Engineering WS2 exciton polarization by an anisotropic organic substrate
通过各向异性有机基底工程 WS2 激子极化
  • DOI:
    10.1063/5.0094819
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhiyuan An;Qiang Ai;Haitao Chen;Xiao Wang;Tingge Gao
  • 通讯作者:
    Tingge Gao

Xiao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Wang', 18)}}的其他基金

Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
  • 批准号:
    2318975
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
CAREER: Pushing the Practicality of Secure Multiparty Computation
职业:推动安全多方计算的实用性
  • 批准号:
    2236819
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Continuing Grant
Neural Inference of Dynamic Systems
动态系统的神经推理
  • 批准号:
    2316428
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
Prediction Models Based on Large Scale Image Data
基于大规模图像数据的预测模型
  • 批准号:
    1613060
  • 财政年份:
    2016
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
Collaborative Research: A Constrained Optimal Control Approach to Nonparametric Estimation with Applications to Biological, Biomedical and Engineering Systems
协作研究:非参数估计的约束最优控制方法及其在生物、生物医学和工程系统中的应用
  • 批准号:
    1030246
  • 财政年份:
    2010
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Estimation of Nonlinear Components and Disturbances in Dynamical Systems with Applications to Threat Detection
ATD:协作研究:动态系统中非线性分量和扰动的估计及其在威胁检测中的应用
  • 批准号:
    1042967
  • 财政年份:
    2010
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
Reliability Inference and Degradation Modeling based on a Class of Nonhomogeneous Levy Processes
基于一类非齐次Levy过程的可靠性推断与退化建模
  • 批准号:
    0805031
  • 财政年份:
    2008
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant

相似海外基金

EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Research Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
  • 批准号:
    DP240103385
  • 财政年份:
    2024
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Discovery Projects
Synthetic Chronogenetic Gene Circuits for Circadian Cell Therapies
用于昼夜节律细胞疗法的合成计时基因电路
  • 批准号:
    10797183
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
Development of innovative synthetic biology tools utilizing novel gene regulatory systems of in microorganisms
利用微生物中的新型基因调控系统开发创新的合成生物学工具
  • 批准号:
    23K18014
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Developing a Synthetic Adeno-Associated Virus (AAV) for Engineering Safer Gene Therapies
开发合成腺相关病毒(AAV)以设计更安全的基因疗法
  • 批准号:
    10629902
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
UKRI/BBSRC-NSF/BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
UKRI/BBSRC-NSF/BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    2321745
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Standard Grant
Dissecting the logic of mammalian gene regulation using synthetic biology and single-cell sequencing
使用合成生物学和单细胞测序剖析哺乳动物基因调控的逻辑
  • 批准号:
    10696717
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
Novel, synthetic gene editing technology for gene knock-ins without DNA cleavage
新颖的合成基因编辑技术,无需 DNA 切割即可进行基因敲入
  • 批准号:
    10060261
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
    Collaborative R&D
Harnessing stem cells and synthetic gene circuits to repair glomerular injury
利用干细胞和合成基因电路修复肾小球损伤
  • 批准号:
    10687570
  • 财政年份:
    2023
  • 资助金额:
    $ 68.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了