Conference: Geometric and Asymptotic Group Theory with Applications, September 15-19, New York, NY

会议:几何和渐近群理论及其应用,9 月 15 日至 19 日,纽约州纽约

基本信息

  • 批准号:
    0805552
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

The conference on "Geometric and Asymptotic Group Theory with Applications" will be devoted to the study of a variety of topicsin geometric and combinatorial group theory, with special emphasis on asymptotic and probabilistic methods and their applications.More specifically, the topics include: group actions, quasi-isometries, isoperimetric functions, growth, asymptotic invariants, randomwalks, algorithmic problems, etc. Applications will be emphasized, especially those concerning complexity theory and information security. Building a solid mathematical foundation for the use of infinite groups in cryptography will inevitably involve operating with various asymptotic and statistical aspects of infinite groups, and this is where modern group theory finds its important applications.What makes this conference stand out compared to other conferences on geometric and/or asymptotic group theory is the emphasis onapplications to other areas of science and to real-life problems. More specifically, we are going to emphasize applications thatconcern complexity theory and information security, in particular cryptography. Cryptography and cryptographic protocols have becomea key element of information systems, protecting data and communications to ensure confidentiality, integrity and authenticityof data. While most symmetric key systems (block ciphers such as DES and AES and stream ciphers) have relatively modest mathematical requirements, asymmetric or public key systems, as well as cryptographic protocols, have become increasingly mathematically sophisticated, and, in particular, the emerging "non-commutative cryptography" exploits various properties of non-abelian infinite groups in very non-trivial ways.
The conference on "Geometric and Asymptotic Group Theory with Applications" will be devoted to the study of a variety of topicsin geometric and combinatorial group theory, with special emphasis on asymptotic and probabilistic methods and their applications.More specifically, the topics include: group actions, quasi-isometries, isoperimetric functions, growth, asymptotic invariants, randomwalks, algorithmic问题等。将强调应用程序,尤其是那些有关复杂性理论和信息安全的应用程序。为在密码学中使用无限群体的使用建立坚实的数学基础,将不可避免地涉及与无限群体的各种渐近和统计方面的运作,这是现代群体理论找到其重要应用的地方。与几何学和/或渐近群体理论相比,这次会议与其他方面的其他会议相比,与其他领域相比,与其他领域相比,与其他领域相比,与其他领域相比,与其他领域相比。更具体地说,我们将强调将复杂性理论和信息安全性,特别是密码学的应用程序。 加密和加密协议已成为信息系统的关键要素,保护数据和通信以确保保密性,完整性和真实性数据。 While most symmetric key systems (block ciphers such as DES and AES and stream ciphers) have relatively modest mathematical requirements, asymmetric or public key systems, as well as cryptographic protocols, have become increasingly mathematically sophisticated, and, in particular, the emerging "non-commutative cryptography" exploits various properties of non-abelian infinite groups in very non-trivial ways.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Shpilrain其他文献

On two-generator subgroups in <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi mathvariant="double-struck">Z</mi><mo stretchy="false">)</mo></math>, <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll" class="math"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi mathvariant="double-struck">Q</mi><mo stretchy="false">)</mo></math>, and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si27.gif" overflow="scroll" class="math"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy="false">(</mo><mi mathvariant="double-struck">R</mi><mo stretchy="false">)</mo></math>
  • DOI:
    10.1016/j.jalgebra.2017.01.036
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Anastasiia Chorna;Katherine Geller;Vladimir Shpilrain
  • 通讯作者:
    Vladimir Shpilrain

Vladimir Shpilrain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Shpilrain', 18)}}的其他基金

International Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用国际会议
  • 批准号:
    1928295
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Theoretical and experimental approaches to search problems in group theory
协作研究:群论中搜索问题的理论和实验方法
  • 批准号:
    0914778
  • 财政年份:
    2009
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications
会议:几何和渐近群理论及其应用
  • 批准号:
    0613035
  • 财政年份:
    2006
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Generic Properties of Groups, Geometric Invariants and Algorithms
协作研究:群的泛性、几何不变量和算法
  • 批准号:
    0405105
  • 财政年份:
    2004
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

强杂波下雷达弱小目标检测的矩阵信息几何方法
  • 批准号:
    62371458
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于离散几何模型的高质量非结构曲面网格生成方法研究
  • 批准号:
    12301489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拓扑棱态的微观几何性质及其在非线性光响应中的特征
  • 批准号:
    12374164
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
流固复合膜的几何非线性弹性
  • 批准号:
    12374210
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
离心叶轮冷热态双重不确定性几何变形的流动机理及鲁棒设计方法
  • 批准号:
    52376030
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
  • 批准号:
    2311110
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
International Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用国际会议
  • 批准号:
    1928295
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用会议
  • 批准号:
    1565874
  • 财政年份:
    2016
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference ``Geometric and Asymptotic Group Theory with Applications'', July 21-25, 2014
会议“几何和渐近群理论及其应用”,2014 年 7 月 21-25 日
  • 批准号:
    1417094
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了