Conference: Geometric and Asymptotic Group Theory with Applications 2024

会议:几何和渐近群理论及其应用 2024

基本信息

  • 批准号:
    2403833
  • 负责人:
  • 金额:
    $ 2.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The conference “Geometric and Asymptotic Group Theory with Applications” will be held in Luminy, France February 5 - 9, 2024. This award provides partial travel support for a group of early career US based mathematicians to attend this conference. The conference has an interdisciplinarity nature, focusing on topics in the intersection of mathematics and computer science. A variety of leading experts working in the relevant fields will present their work. Early career US based participants will also be given the opportunity to give talks and thereby enhance their international profile. The exposure to recent developments in the field and the opportunities to communicate with their colleagues from all over the world is expected to initiate new research collaborations. Conference organizers will devote special efforts to recruit and encourage members of under-represented groups in mathematics.The study of infinite groups is a very active area in modern mathematics. A major trend in this area is geometric group theory, which aims at understanding the asymptotic geometry of finitely generated groups. On the other hand, this seemingly geometric approach to infinite groups also has deep connections to the more classical theme of decidability, logic, and algorithmic aspects of group theory, which lie in the intersection of computer science and mathematics. This conference will bring together prominent researchers interested in group theory, but from different sub-fields and viewpoints, some on the geometric side, while others on the algorithmic/computation side, to present their work. The speakers are carefully chosen in order to emphasize connections between different aspects, and to stimulate further collaboration. A wide range of infinite groups of great importance will be discussed during the conference, including cubical groups, hyperbolic groups, automaton groups, automatic groups, Artin groups, Coxeter groups, self-similar groups, non-positively curved groups etc. More information is available on the webpage of the conference at https://conferences.cirm-math.fr/3149.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“几何和渐近群理论与应用”将于2024年2月5日至9日在法国Luminy举行。该奖项为一群早期职业生涯的美国数学家参加这次会议提供部分旅行支持。该会议具有跨学科性质,侧重于数学和计算机科学交叉的主题。在相关领域工作的各种主要专家将介绍他们的工作。美国的早期职业参与者也将有机会进行演讲,从而提高他们的国际形象。接触到该领域的最新发展以及与来自世界各地的同事进行交流的机会,预计将启动新的研究合作。会议组织者将特别努力招募和鼓励数学中代表性不足的群体的成员。无限群的研究是现代数学中一个非常活跃的领域。在这一领域的一个主要趋势是几何群论,其目的是了解渐近几何的n-生成群。另一方面,这种看似几何的无限群方法也与群论的可判定性、逻辑和算法方面的更经典主题有着深刻的联系,这些主题位于计算机科学和数学的交叉点。本次会议将汇集对群论感兴趣的杰出研究人员,但来自不同的子领域和观点,一些在几何方面,而另一些在算法/计算方面,以展示他们的工作。发言者是精心挑选的,以强调不同方面之间的联系,并促进进一步的合作。会议期间将讨论各种非常重要的无限群,包括立方群,双曲群,自动机群,自动群,Artin群,Coxeter群,自相似群,非正弯曲群等。更多信息可在会议的网页上获得,网址为https://conferences.cirm-math.fr/3149.html.This。知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyin Huang其他文献

Proper proximality in non-positive curvature
非正曲率的适当邻近性
  • DOI:
    10.1353/ajm.2023.a907700
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Camille Horbez;Jingyin Huang;Jean L'ecureux
  • 通讯作者:
    Jean L'ecureux
Morse Quasiflats.
莫尔斯准扁平。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyin Huang;Bruce Kleiner;Stephan Stadler
  • 通讯作者:
    Stephan Stadler
Lattices, Garside structures and weakly modular graphs
格子、Garside 结构和弱模块化图
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    T. Haettel;Jingyin Huang
  • 通讯作者:
    Jingyin Huang
Orbit equivalence rigidity of irreducible actions of right-angled Artin groups
直角Artin群不可约作用的轨道等效刚度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Camille Horbez;Jingyin Huang;A. Ioana
  • 通讯作者:
    A. Ioana
Metric systolicity and two-dimensional Artin groups
公制收缩期和二维 Artin 群
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jingyin Huang;Damian Osajda
  • 通讯作者:
    Damian Osajda

Jingyin Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyin Huang', 18)}}的其他基金

The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
  • 批准号:
    2247784
  • 财政年份:
    2023
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Conference on Hyperbolic Groups and Their Generalizations
双曲群及其推广会议
  • 批准号:
    2203429
  • 财政年份:
    2022
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
  • 批准号:
    2311110
  • 财政年份:
    2023
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
  • 批准号:
    2305038
  • 财政年份:
    2023
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2022-03483
  • 财政年份:
    2022
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic Behaviour of Geometric Flows
几何流的渐近行为
  • 批准号:
    2580844
  • 财政年份:
    2021
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Studentship
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2016-06110
  • 财政年份:
    2021
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and Asymptotic Group Theory with Applications 2020
几何和渐近群理论及其应用 2020
  • 批准号:
    1953998
  • 财政年份:
    2020
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2016-06110
  • 财政年份:
    2020
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Discovery Grants Program - Individual
International Conference on Geometric and Asymptotic Group Theory with Applications
几何和渐近群理论及其应用国际会议
  • 批准号:
    1928295
  • 财政年份:
    2019
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Standard Grant
Systematical geometric analysis and asymptotic analysis for evolution equations
演化方程的系统几何分析和渐近分析
  • 批准号:
    19H05599
  • 财政年份:
    2019
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2016-06110
  • 财政年份:
    2019
  • 资助金额:
    $ 2.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了