Fully Nonparametric Models for Random Effects, Order Thresholding, Boostrap Testing, and Applications
用于随机效应、阶次阈值、Boostrap 测试和应用的完全非参数模型
基本信息
- 批准号:0805598
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advancements in information gathering, and the increased fusion of mathematical innovation with biological, oceanic/atmospheric, and psychosocial sciences, have created a plethora of highly complex and very high-dimensional data sets in interdisciplinary research contexts. The non-standard features of such data include non-normality, complex heterogeneity and dependence structures, high-dimensionality, low sample sizes and unbalanced designs. The investigator puts forth more realistic statistical models for such data sets and develops advanced statistical methods for their analysis. This project has five specific aims: to enhance the modeling alternatives by proposing fully nonparametric models for crossed and nested two-way random and mixed effects designs, to construct statistical procedures for the common hypotheses of interest under each of these models (including robust rank-based procedures), to propose order thresholding (thresholding based on L-statistics) for reducing the dimensionality of the alternative hypothesis and for identification of the signal location, to propose a bootstrap testing method for improved accuracy of the test procedures, and to explore applications of the aforementioned test procedures to classification problems, through the recently developed test-based classification method. The proposed models and methods are fundamentally different in approach from the standard likelihood methods, the non- and semi-parametric models, and the Bayesian techniques.The significance of this project stems from the fact that statistical analysis is the final, and often the most important, stage of many expensive scientific investigations. Does the concentration of certain contaminants in coastal waters have a decreasing or an increasing trend? Is a trend in the concentration of contaminants a result of natural processes or is it caused by human activity? Are gene expressions different under different biological environments and which genes are responsible for this difference? Has the Gang Resistance Education and Training(G.R.E.A.T.) program been effective in reducing adolescent deviant/illegal activities in urban areas? In early detection of the use of bioweapons, is there a signal (a certain symptom at rates higher than background) and if so where is it located? Typically, the data collected for answering such questions exhibit highly non-standard features. The data being collected by the Mussel Watch Project of NOAA's National Status and Trends program for monitoring marine environmental quality, is a good example of the type of complex features such data can exhibit. Due to their non-standard features, the data may fail to satisfy the regularity conditions that alternative models and methods require. Analyzing data under assumptions that are not satisfied may lead to incorrect conclusions regarding the statistically significant factors and trends, or may fail to identify an existing signal or the genes that are affected by a disease. The objective of this proposal is to develop advanced methods for data analysis based on realistic statistical models, and to develop software for their implementation.
信息收集方面的技术进步,以及数学创新与生物、海洋/大气和心理社会科学的日益融合,在跨学科研究背景下创造了大量高度复杂和非常高维的数据集。这类数据的非标准特征包括非正态性、复杂的异质性和相关性结构、高维性、低样本量和不平衡设计。研究人员提出了更现实的统计模型,这些数据集,并开发先进的统计方法,他们的分析。该项目有五个具体目标:通过为交叉和嵌套的双向随机和混合效应设计提出完全非参数模型来增强建模备选方案,为每个模型下的共同假设构建统计程序(包括基于等级的强有力程序),提出顺序阈值(基于L-统计的阈值处理),用于降低备择假设的维度和用于识别信号位置,提出一种自举测试方法,以提高测试程序的准确性,并通过最近开发的基于测试的分类方法,探索上述测试程序在分类问题中的应用。所提出的模型和方法在方法上与标准的似然方法、非参数和半参数模型以及贝叶斯技术有着根本的不同,这一项目的重要性源于这样一个事实,即统计分析是许多昂贵的科学研究的最后阶段,而且往往是最重要的阶段。沿海沃茨中某些污染物的浓度是否有下降或上升的趋势?污染物浓度的趋势是自然过程的结果还是人类活动造成的?在不同的生物环境下,基因的表达是否不同?哪些基因是造成这种差异的原因?有帮派抵抗教育和培训(G.R.E.A.T.)该计划是否有效减少了城市地区青少年的越轨/非法活动?在生物武器使用的早期检测中,是否有信号(某种症状的发生率高于背景),如果有,信号在哪里?通常,为回答这些问题而收集的数据表现出高度非标准的特征。NOAA的国家状况和趋势方案的贻贝观察项目正在收集的数据,用于监测海洋环境质量,是这种数据可以展示的复杂特征类型的一个很好的例子。由于其非标准特征,数据可能无法满足替代模型和方法所要求的规律性条件。在不满足的假设下分析数据可能会导致关于统计学显著因素和趋势的错误结论,或者可能无法识别受疾病影响的现有信号或基因。这项建议的目的是根据现实的统计模型制定先进的数据分析方法,并开发执行这些方法的软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Akritas其他文献
Michael Akritas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Akritas', 18)}}的其他基金
Variable Selection, Variable Screening and Dimension Reduction
变量选择、变量筛选和降维
- 批准号:
1209059 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Nonparametric Models and Methods for Social Sciences Data
社会科学数据的非参数模型和方法
- 批准号:
0318200 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Nonparametric Models for Incomplete Clustered Data with Applications to the Social Sciences
协作研究:不完整聚类数据的非参数模型及其在社会科学中的应用
- 批准号:
9986592 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Nonparametric Models and Methods for Analysis of Covariance in Social Sciences Research
社会科学研究中协方差分析的非参数模型和方法
- 批准号:
9709891 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multivariate and Censored Data Analysis Methods for Astronomy
数学科学:天文学的多元和审查数据分析方法
- 批准号:
9208066 - 财政年份:1992
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Statistical Methods for Analyzing Data from Astronomical Surveys
数学科学:分析天文测量数据的高级统计方法
- 批准号:
9007717 - 财政年份:1990
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
U.S.-Netherlands Cooperative Research: Statistical Methods for Analyzing Data Arising from Reliability Studies (Mathematical Sciences)
美国-荷兰合作研究:分析可靠性研究数据的统计方法(数学科学)
- 批准号:
8700734 - 财政年份:1987
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Nonparametric zero-inflated measurement error models and their applications
非参数零膨胀测量误差模型及其应用
- 批准号:
RGPIN-2019-06043 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
- 批准号:
2143468 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Data Sharpening for Nonparametric Time Series Models
非参数时间序列模型的数据锐化
- 批准号:
577542-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
- 批准号:
RGPIN-2016-06262 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric zero-inflated measurement error models and their applications
非参数零膨胀测量误差模型及其应用
- 批准号:
RGPIN-2019-06043 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric zero-inflated measurement error models and their applications
非参数零膨胀测量误差模型及其应用
- 批准号:
RGPIN-2019-06043 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
High-dimensional statistical inference in parametric and nonparametric models
参数和非参数模型中的高维统计推断
- 批准号:
RGPIN-2016-06262 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual