Collaborative Research: Nonparametric Models for Incomplete Clustered Data with Applications to the Social Sciences
协作研究:不完整聚类数据的非参数模型及其在社会科学中的应用
基本信息
- 批准号:9986592
- 负责人:
- 金额:$ 7.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Clustered data are very common in social sciences research and other fields. For example, in a study involving school children, school districts form clusters and schools form sub-clusters within each cluster. In this context, researchers want to explain a certain variable of interest (the response variable) in terms of certain categorical variables (factors) while adjusting for the presence of other incidental variables (covariates) which might influence the response. This project aims at developing statistical methods for analyzing such data. Though the classical statistical methods accommodate the lack of independence that is inherent to data arising from cluster sampling, they are very often unsuitable for data arising from social science research. This is because they require a set of restrictive assumptions (such as normality and homogeneity of the residuals, linearity, scale dependence) which are rarely satisfied in the social sciences. In addition, data in social sciences research are often incomplete (censored or missing) in which case inference based on the classical statistical models cannot be implemented. Alternative approaches developed to deal with these issues also rely on assumptions which may or may not be satisfied for any given application. The research for this project will focus on the development of statistical models and methods that are free of restrictive assumptions. Central components of the project is the application of these methods to questions regarding routine activities and deviant behavior, and to the question of whether there has been a secular rise in job instability among young adults over the past three decades using two cohorts from the National Longitudinal Survey (NLS). Programs for formal hypothesis testing, graphical summaries of effects and exploratory data analysis plots, will be made available on the web for use by the social sciences community.Correct statistical analysis is very important as it often forms the basis for policy and other decisions. The nonparametric formulation in this project is especially apt for many kinds of social science data where we have weak theories about functional forms and weak measurement procedures (e.g., with attitudes) that produce ordinal or only somewhat stronger (but typically not interval) scales. The violation of assumptions underlying a statistical approach can result in misuse of scarce data resources and ultimately misguided policy decisions.
在社会科学研究和其他领域,数据挖掘是非常普遍的。 例如,在一项涉及学童的研究中,学区形成群组,学校在每个群组内形成子群组。 在这种情况下,研究人员希望用某些分类变量(因素)来解释某个感兴趣的变量(响应变量),同时调整可能影响响应的其他偶然变量(协变量)的存在。 该项目旨在开发分析此类数据的统计方法。 虽然经典的统计方法适应了缺乏独立性,这是固有的,从集群抽样产生的数据,他们往往不适合来自社会科学研究的数据。 这是因为它们需要一组限制性的假设(如残差的正态性和同质性,线性,尺度依赖性),这在社会科学中很少得到满足。 此外,社会科学研究中的数据往往是不完整的(审查或缺失),在这种情况下,无法实施基于经典统计模型的推断。 为处理这些问题而开发的替代方法也依赖于对任何特定应用可能满足或可能不满足的假设。 该项目的研究将侧重于开发不受限制性假设的统计模型和方法。 该项目的核心组成部分是应用这些方法的问题,关于日常活动和越轨行为,以及是否有一个长期上升的问题,在工作不稳定的年轻人在过去的三十年中,使用两个队列从国家纵向调查(NLS)。 正式的假设检验程序、效果的图形摘要和探索性数据分析图将在网上提供给社会科学界使用。正确的统计分析非常重要,因为它往往构成政策和其他决定的基础。 本项目中的非参数公式特别适用于许多类型的社会科学数据,其中我们对函数形式和弱测量程序的理论很弱(例如,与态度),产生顺序或只是稍微强(但通常不是间隔)规模。 违反统计方法所依据的假设可能导致滥用稀缺的数据资源,并最终导致错误的政策决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Akritas其他文献
Michael Akritas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Akritas', 18)}}的其他基金
Variable Selection, Variable Screening and Dimension Reduction
变量选择、变量筛选和降维
- 批准号:
1209059 - 财政年份:2012
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Fully Nonparametric Models for Random Effects, Order Thresholding, Boostrap Testing, and Applications
用于随机效应、阶次阈值、Boostrap 测试和应用的完全非参数模型
- 批准号:
0805598 - 财政年份:2008
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
Nonparametric Models and Methods for Social Sciences Data
社会科学数据的非参数模型和方法
- 批准号:
0318200 - 财政年份:2003
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
Nonparametric Models and Methods for Analysis of Covariance in Social Sciences Research
社会科学研究中协方差分析的非参数模型和方法
- 批准号:
9709891 - 财政年份:1997
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multivariate and Censored Data Analysis Methods for Astronomy
数学科学:天文学的多元和审查数据分析方法
- 批准号:
9208066 - 财政年份:1992
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Statistical Methods for Analyzing Data from Astronomical Surveys
数学科学:分析天文测量数据的高级统计方法
- 批准号:
9007717 - 财政年份:1990
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
U.S.-Netherlands Cooperative Research: Statistical Methods for Analyzing Data Arising from Reliability Studies (Mathematical Sciences)
美国-荷兰合作研究:分析可靠性研究数据的统计方法(数学科学)
- 批准号:
8700734 - 财政年份:1987
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:
2005746 - 财政年份:2019
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
2005779 - 财政年份:2019
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
Collaborative Research: New Bayesian Nonparametric Paradigms of Personalized Medicine for Lung Cancer
合作研究:肺癌个体化医疗的新贝叶斯非参数范式
- 批准号:
1922567 - 财政年份:2018
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
1821157 - 财政年份:2018
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
Collaborative Research: New Bayesian Nonparametric Paradigms of Personalized Medicine for Lung Cancer
合作研究:肺癌个体化医疗的新贝叶斯非参数范式
- 批准号:
1854003 - 财政年份:2018
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
CDS&E: Collaborative Research: Scalable Nonparametric Learning for Massive Data with Statistical Guarantees
CDS
- 批准号:
1821183 - 财政年份:2018
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:
1764280 - 财政年份:2017
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:
1712907 - 财政年份:2017
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Collaborative Research: Nonparametric Bayesian Aggregation for Massive Data
协作研究:海量数据的非参数贝叶斯聚合
- 批准号:
1712919 - 财政年份:2017
- 资助金额:
$ 7.05万 - 项目类别:
Continuing Grant
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
- 批准号:
1628878 - 财政年份:2016
- 资助金额:
$ 7.05万 - 项目类别:
Standard Grant