Contact Topology, Knots, and Heegaard Floer Theory
接触拓扑、纽结和 Heegaard Floer 理论
基本信息
- 批准号:0805836
- 负责人:
- 金额:$ 10.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0805836Principal Investigator: Olga PlamenevskayaThis proposal focuses on contact topology in dimension 3 and therelated version of knot theory, the study of Legendrian andtransverse knots. Contact structures on 3-manifolds encode subtletopological information, and knots in contact manifolds (tangentor transverse to the contact planes) have many additionalproperties. The goal of this project is to better understand therelation between and find new applications of various invariantsof contact structures and Legendrian and transverse knots. Morespecifically, the PI will study various versions of the contact,Legendrian and transverse invariants in Heegaard Floer homology;she proposes to investigate knots via associated contactmanifolds, such as those obtained by surgery on Legendrian knotsand branched covers of transverse knots. A related part of theproject is to develop similar invariants in knot homologiesarising from quantum algebra (Khovanov and Khovanov-Rozanskyhomology). An intriguing relation between Heegaard Floer theory(defined via holomorphic disks) and the quantum algebraic knothomologies exists outside of contact geometry; the PI proposes tostudy this relation in presence of a contact structure. Inparticular, in her previous work the PI suggested a transverseknot invariant in Khovanov homology. The interplay betweenHeegaard Floer and Khovanov homologies allows to use thisinvariant to prove tightness of certain contact structures onbranched double covers of knots. Further progress on this projectcould yield quantum algebraic tools for studying contactstructures in a more general setting, and would improve ourunderstanding of the relation between theories of a verydifferent nature.The proposed research is on geometric topology, an area ofmathematics that studies shapes of curved spaces (manifolds) invarious dimensions. In dimensions 3 and 4, this can be thoughtof as understanding the structure of space and space-time, and isparticularly interesting and important. The study of knots indimension 3 plays a major role in topology and has importantconnection to other sciences (for example, DNA and certainproteins can be knotted). The proposed project focuses on studyof 3-manifolds and knots in presence of a contact structure, anobject somewhat analogous to an electric field in physics.(Historically, the study of contact structures was firstmotivated by classical mechanics, optics and thermodynamics.)Contact structures are important objects by themselves, but alsoencode valuable information about the space they live in. In herresearch, the PI plans to use tools and ideas from differentbranches of mathematics such as geometry and quantum algebra. Thebroader goals of the project thus include a better understandingof the relation between these different branches, as well as newresults in and applications of the topology of contact manifolds.
AbstractAward:DMS-0805836首席研究员:Olga Plamenevskaya该提案侧重于三维接触拓扑和结理论的相关版本,Legendrian和横向结的研究。3-流形上的切触结构编码了微妙的拓扑信息,而切触流形中的纽结(切触平面的切线或横截)具有许多附加性质。本项目的目的是更好地理解接触结构的各种不变量与勒让德结和横结之间的关系,并找到新的应用。更具体地说,PI将研究各种版本的接触,Legendrian和横向不变量在Heegaard Floer同源性;她建议通过相关的contactmanifold研究结,例如通过手术获得的Legendrian knotsand横向结的分支覆盖。该项目的一个相关部分是在量子代数中产生的结同调(Khovanov和Khovanov-Rozansky同调)中开发类似的不变量。 Heegaard Floer理论(通过全纯圆盘定义)和量子代数knothomologies之间存在着一种有趣的关系,存在于接触几何之外; PI建议在接触结构的存在下研究这种关系。特别是,在她以前的工作PI建议一个transverseknot不变Khovanov同源。 Heegaard Floer和Khovanov同调之间的相互作用允许使用这个不变量来证明某些接触结构的紧性。该项目的进一步进展可能会产生量子代数工具,用于在更一般的环境中研究接触结构,并将提高我们对不同性质的理论之间关系的理解。拟议的研究是几何拓扑学,这是一个研究各种维度的弯曲空间(流形)形状的数学领域。 在三维和四维中,这可以被认为是理解空间和时空的结构,特别有趣和重要。三维节点的研究在拓扑学中起着重要的作用,并与其他科学有着重要的联系(例如,DNA和某些蛋白质可以打结)。该项目的重点是研究存在接触结构的3-流形和结,接触结构是一种有点类似于物理学中电场的物体。(历史上,接触结构的研究首先受到经典力学、光学和热力学的推动。接触结构本身是重要的物体,但也编码了关于它们所处空间的有价值的信息。在她的研究中,PI计划使用来自不同数学分支的工具和思想,如几何和量子代数。因此,该项目的更广泛的目标包括更好地理解这些不同分支之间的关系,以及接触流形拓扑结构的新结果和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Plamenevskaya其他文献
Olga Plamenevskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Plamenevskaya', 18)}}的其他基金
Low-dimensional topology and links of singularities
低维拓扑和奇点链接
- 批准号:
2304080 - 财政年份:2023
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Conference: Gauge Theory and Topology
会议:规范理论与拓扑
- 批准号:
2308798 - 财政年份:2023
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Low-Dimensional and Contact Topology of Links of Surface Singularities
表面奇点链接的低维接触拓扑
- 批准号:
1906260 - 财政年份:2019
- 资助金额:
$ 10.72万 - 项目类别:
Continuing Grant
Some Questions in Low-Dimensional and Contact Topology
低维接触拓扑的一些问题
- 批准号:
1510091 - 财政年份:2015
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Open Books, Lefschetz Fibrations, and Related Questions in Low-Dimensional Topology
低维拓扑中的打开书籍、莱夫谢茨纤维和相关问题
- 批准号:
1105674 - 财政年份:2011
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
相似海外基金
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 10.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 10.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Quantum topology and invariants of knots and 3-manifolds related to gauge theory
量子拓扑以及与规范理论相关的结和三流形的不变量
- 批准号:
16K13754 - 财政年份:2016
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
International Conference on Knots, Low-Dimensional Topology, and Applications
结、低维拓扑和应用国际会议
- 批准号:
1632551 - 财政年份:2016
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Quantum Topology of knots and 3-manifolds
结和三流形的量子拓扑
- 批准号:
16H02145 - 财政年份:2016
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Spins and Knots: The Rise of Topology in F-Orbital Materials
自旋与结:F 轨道材料中拓扑的兴起
- 批准号:
1506547 - 财政年份:2015
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Knots and contact topology through holomorphic curves
通过全纯曲线的结和接触拓扑
- 批准号:
1406371 - 财政年份:2014
- 资助金额:
$ 10.72万 - 项目类别:
Continuing Grant
Conference on low-dimensional topology, knots, and orderable groups
低维拓扑、结和可有序群会议
- 批准号:
1305714 - 财政年份:2013
- 资助金额:
$ 10.72万 - 项目类别:
Standard Grant
Study on local moves of knots with application to polymer topology
结的局部移动研究及其在聚合物拓扑中的应用
- 批准号:
24540089 - 财政年份:2012
- 资助金额:
$ 10.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)