Knots and contact topology through holomorphic curves
通过全纯曲线的结和接触拓扑
基本信息
- 批准号:1406371
- 负责人:
- 金额:$ 43.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subjects of mathematics and physics have always been closely intertwined, with each one motivating and informing progress in the other. This project focuses on one current area of interplay, between topology (the study of shapes) on the mathematical side and string theory on the physics side. The jumping-off point for the project is an intriguing and unexpected connection, recently discovered by the Principal Investigator and collaborators on both sides, between two separate algebraic structures associated to knots in space: one in topology developed by the Principal Investigator, and one in string theory that has been the focus of much research in the past few years. In the course of this project, the Principal Investigator will establish this connection, which is currently only supported circumstantially; it is hoped that this work will create and strengthen new lines of communication between mathematics and physics, introducing techniques from each discipline into the other. The Principal Investigator will also use this project to train future mathematicians at all levels, from contributing to the annual USA Mathematical Olympiad for high school students, to supervising the research of undergraduates, graduate students, and postdoctoral fellows, to organizing conferences and seminars for established researchers.In the past decade, the Principal Investigator has introduced and studied a package of knot invariants called knot contact homology, which arises by counting holomorphic curves in certain symplectic manifolds, using a method in symplectic geometry pioneered by Gromov and Floer and more recently culminating in the Symplectic Field Theory of Eliashberg, Givental, and Hofer. Previous work has shown that knot contact homology is a robust invariant that is effective at distinguishing knots and contains classical topological information about the knot. In 2012, it was discovered by Aganagic, Ekholm, Vafa, and the Principal Investigator that knot contact homology has an unexpected and potentially powerful relation to string theory and mirror symmetry: the augmentation polynomial, a knot invariant derived from knot contact homology, is conjectured to be equal to Aganagic and Vafa's Q-deformed A-polynomial, which arises in the context of topological strings. The Principal Investigator will approach this conjecture using Lagrangian fillings and Gromov-Witten potentials. This could have significant ramifications in different directions: in knot theory, it would establish a variant of the AJ conjecture; in mirror symmetry, it would produce a new approach via Symplectic Field Theory to constructing mirror Calabi-Yau 3-folds; and in topological string theory, it would provide a mathematical foundation for recent results. In related work, the Principal Investigator will develop and strengthen the algebraic framework underneath certain aspects of Symplectic Field Theory, including knot contact homology and symplectic homology. New algebraic tools in this context, such as representation theory for differential graded algebras, would enable one to more effectively attack problems in symplectic geometry, in particular by analyzing Weinstein structures on symplectic manifolds and Legendrian and transverse knots in contact manifolds.
数学和物理学科一直紧密地交织在一起,每一门学科都激励着另一门学科的进步。这个项目集中在一个当前的相互作用领域,数学方面的拓扑学(形状研究)和物理方面的弦理论之间的相互作用。该项目的起点是两个独立的代数结构之间的一种有趣和意想不到的联系,这是首席研究人员和双方的合作者最近发现的,两个独立的代数结构与空间中的节点有关:一个是由首席研究人员开发的拓扑学,另一个是弦理论,这是过去几年来许多研究的焦点。在这个项目的过程中,首席研究员将建立这种联系,目前这种联系只得到间接的支持;希望这项工作将建立和加强数学和物理之间的新的交流渠道,将每个学科的技术引入到另一个学科。首席研究人员还将利用这个项目来培养所有级别的未来数学家,从为一年一度的美国高中生数学奥林匹克竞赛做出贡献,到监督本科生、研究生和博士后研究员的研究,再到为知名研究人员组织会议和研讨会。在过去的十年里,首席研究人员引入并研究了一套称为纽结接触同调的纽结不变量,它是通过计算某些辛流形中的全纯曲线而产生的,使用了格罗莫夫和弗洛尔开创的辛几何方法,最近发展到了埃拉什伯格、吉夫勒和霍弗的辛场理论。前人的工作表明,纽结接触同调是一种稳健的不变量,它在区分纽结方面是有效的,并且包含了关于纽结的经典拓扑信息。2012年,由Aganial,Ekholm,Vafa和主要研究者发现,纽结接触同调与弦理论和镜像对称性有一种意想不到的潜在的强大联系:由纽结接触同调导出的纽结不变量--增广多项式被猜想等同于Aganial和Vafa的q-变形A-多项式,后者产生于拓扑弦的背景下。首席调查员将使用拉格朗日填充和Gromov-Witten势来处理这个猜想。这可能会在不同的方向产生重大的影响:在纽结理论中,它将建立AJ猜想的一个变体;在镜像对称中,它将产生一种通过辛场理论构造镜像Calabi-Yau三折叠的新方法;在拓扑弦论中,它将为最近的结果提供数学基础。在相关工作中,首席研究员将在辛场理论的某些方面下发展和加强代数框架,包括纽结接触同调和辛同调。在这一背景下,新的代数工具,如微分分次代数的表示理论,将使人们能够更有效地攻击辛几何中的问题,特别是通过分析辛流形上的Weinstein结构和接触流形中的Legendrian和横向纽结。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representations, sheaves and Legendrian (2,m) torus links
表示、滑轮和 Legendrian (2,m) 环面链接
- DOI:10.1112/jlms.12204
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chantraine, Baptiste;Ng, Lenhard;Sivek, Steven
- 通讯作者:Sivek, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lenhard Ng其他文献
Lenhard Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lenhard Ng', 18)}}的其他基金
Holomorphic Invariants of Knots and Contact Manifolds
结和接触流形的全纯不变量
- 批准号:
2003404 - 财政年份:2020
- 资助金额:
$ 43.67万 - 项目类别:
Continuing Grant
Holomorphic Invariants in Symplectic Topology
辛拓扑中的全纯不变量
- 批准号:
1707652 - 财政年份:2017
- 资助金额:
$ 43.67万 - 项目类别:
Continuing Grant
CAREER: Symplectic Field Theory and Low-Dimensional Topology
职业:辛场论和低维拓扑
- 批准号:
0846346 - 财政年份:2009
- 资助金额:
$ 43.67万 - 项目类别:
Continuing Grant
Holomorphic Curves and Low-Dimensional Topology
全纯曲线和低维拓扑
- 批准号:
0706777 - 财政年份:2007
- 资助金额:
$ 43.67万 - 项目类别:
Standard Grant
相似国自然基金
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
- 批准号:92054105
- 批准年份:2020
- 资助金额:80.0 万元
- 项目类别:重大研究计划
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
- 批准号:92054106
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
黄病毒组装促进内质网-脂滴互作的调控机制研究
- 批准号:92054104
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
PKM2调控脂滴与线粒体互作机制及生理功能研究
- 批准号:92054107
- 批准年份:2020
- 资助金额:83.0 万元
- 项目类别:重大研究计划
磷脂分子参与植物细胞器互作及自噬的调控机制
- 批准号:91954206
- 批准年份:2019
- 资助金额:301.0 万元
- 项目类别:重大研究计划
基于功能蛋白质组学的线粒体相关内质网膜内源动态蛋白互作网络研究
- 批准号:91954103
- 批准年份:2019
- 资助金额:74.0 万元
- 项目类别:重大研究计划
有性生殖过程纤毛与细胞外膜泡细胞器互作网络建立和调控的分子机理
- 批准号:91954123
- 批准年份:2019
- 资助金额:76.0 万元
- 项目类别:重大研究计划
棕色脂肪细胞脂滴线粒体互作的建立及维持机制研究
- 批准号:91954108
- 批准年份:2019
- 资助金额:79.0 万元
- 项目类别:重大研究计划
线粒体-溶酶体互作与iNKT细胞的抗肿瘤功能研究
- 批准号:91954122
- 批准年份:2019
- 资助金额:81.0 万元
- 项目类别:重大研究计划
细胞代谢调控线粒体稳态及其与细胞器互作的机制研究
- 批准号:91954204
- 批准年份:2019
- 资助金额:314.0 万元
- 项目类别:重大研究计划
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 43.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
- 批准号:
RGPIN-2017-05596 - 财政年份:2022
- 资助金额:
$ 43.67万 - 项目类别:
Discovery Grants Program - Individual
The Topology of Contact Type Hypersurfaces and Related Topics
接触型超曲面拓扑及相关主题
- 批准号:
2105525 - 财政年份:2021
- 资助金额:
$ 43.67万 - 项目类别:
Standard Grant
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
- 批准号:
RGPIN-2017-05596 - 财政年份:2021
- 资助金额:
$ 43.67万 - 项目类别:
Discovery Grants Program - Individual
Elliptic surfaces, branched covers and the topology of plane curve arrangements
椭圆面、分支覆盖和平面曲线排列的拓扑
- 批准号:
20K03561 - 财政年份:2020
- 资助金额:
$ 43.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
- 批准号:
RGPIN-2017-05596 - 财政年份:2020
- 资助金额:
$ 43.67万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Legendrian and Contact Topology in Higher Dimensions
职业:高维中的勒让德和接触拓扑
- 批准号:
1942363 - 财政年份:2020
- 资助金额:
$ 43.67万 - 项目类别:
Continuing Grant
Low-Dimensional and Contact Topology of Links of Surface Singularities
表面奇点链接的低维接触拓扑
- 批准号:
1906260 - 财政年份:2019
- 资助金额:
$ 43.67万 - 项目类别:
Continuing Grant
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
- 批准号:
RGPIN-2017-05596 - 财政年份:2019
- 资助金额:
$ 43.67万 - 项目类别:
Discovery Grants Program - Individual