Finiteness properties of groups acting on rooted trees

作用于有根树的群的有限性

基本信息

  • 批准号:
    0805932
  • 负责人:
  • 金额:
    $ 10.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

The proposer suggests a research plan involving properties of self-similar groups acting on rooted trees, with particular attention paid to classes of self-similar groups enjoying additional finiteness properties such as being generated by a finite self-similar set, being branch groups (having rigid stabilizers of finite index), being finitely constrained (being defined by finitely many forbidden patterns), being contracting (having finite nucleus), being torsion, etc. Among the proposed directions of study are problems involving growth questions, correspondence between notions and results in symbolic dynamics and the theory of self-similar groups, Hausdorff dimension of closures of self-similar groups, questions relating torsion, growth, Hausdorff dimension and the branching property in the setting of self-similar groups, and properties of some particularly interesting groups such as Hanoi Towers groups and the tent map groups.Broadly speaking, the notion of self-similarity concerns an entity in which many copies of the original can be found at various scales within the entity itself. This is a fundamental notion reflected in many ways both in nature (well known examples include structure of clouds, coastal shapes, plant branching patterns, etc.) and in mathematics (as a recursion, iteration, self-reference, renormalization, etc.). The notion of self-similarity was recently introduced into group theory through actions on rooted trees. The point of view of studying some aspects and some classes of groups through actions on rooted trees has proved to be rather fruitful, since it allows the introduction of many natural(visual) concepts and ideas, while simplifying the notation and presentation. In fact, it is precisely this shift in language that enabled better intuition and resulted in the ongoing explosion of insights, breakthroughs, and links to other areas of mathematics. The current research moves in many directions, reflecting the richness of the subject and its wide appeal and applicability (we can explain and relate in the language of self-similar groups some 2000 years old problems such as Chinese Rings, modern mathematical constructions such as groups of intermediate growth, and entirely new concepts such as iterated monodromy groups).
提议者提出了一项研究计划,涉及作用于有根树的自相似群的性质,特别关注具有附加有限性质的自相似群的类别,例如由有限自相似集生成、是分支群(具有有限指数的刚性稳定器)、是有限约束的(由有限多个禁止模式定义)、是收缩的(具有有限核)、是扭转的等等。 拟议的研究方向是涉及增长问题、符号动力学和自相似群理论中概念和结果之间的对应关系、自相似群闭包的豪斯多夫维数、有关自相似群设置中的扭转、增长、豪斯多夫维数和分支性质的问题,以及一些特别有趣的群的性质,例如河内塔群和帐篷地图群。 自相似性涉及一个实体,在该实体中可以在实体本身的不同尺度上找到原始的许多副本。这是一个在自然界(众所周知的例子包括云结构、海岸形状、植物分支模式等)和数学(如递归、迭代、自引用、重整化等)中以多种方式反映的基本概念。自相似的概念最近通过对有根树的作用被引入群论。通过对有根树的行动来研究群体的某些方面和某些类别的观点已被证明是相当富有成效的,因为它允许引入许多自然(视觉)概念和想法,同时简化符号和表示。事实上,正是这种语言的转变带来了更好的直觉,并导致见解、突破以及与数学其他领域的联系不断爆炸。当前的研究向多个方向发展,反映了该学科的丰富性及其广泛的吸引力和适用性(我们可以用自相似群的语言解释和联系一些2000年前的问题,如中国环,现代数学结构,如中间增长群,以及全新的概念,如迭代单数群)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoran Sunik其他文献

Topological and Asymptotic Aspects of Group Theory
群论的拓扑和渐近方面
  • DOI:
    10.1090/conm/394
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Grigorchuk;M. Mihalik;M. Sapir;Zoran Sunik
  • 通讯作者:
    Zoran Sunik
Branch groups
分支组
  • DOI:
    10.1007/bf02675625
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    L. Bartholdi;R. Grigorchuk;Zoran Sunik
  • 通讯作者:
    Zoran Sunik

Zoran Sunik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoran Sunik', 18)}}的其他基金

Conference on Geometric and Probabilistic Methods in Group Theory and Dynamical Systems; College Station, Texas, - November 9-12, 2015
群论和动力系统中的几何和概率方法会议;
  • 批准号:
    1555792
  • 财政年份:
    2015
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Standard Grant
Self-similar groups of rooted tree automorphisms
有根树自同构的自相似群
  • 批准号:
    1105520
  • 财政年份:
    2011
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Standard Grant
Geometric and probabilistic methods in group theory and dynamical systems
群论和动力系统中的几何和概率方法
  • 批准号:
    0505808
  • 财政年份:
    2005
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Standard Grant

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
  • 批准号:
    20977008
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
  • 批准号:
    50702003
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
  • 批准号:
    10731224
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
  • 批准号:
    10608767
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
A 11C-UCB-J PET Study of Synaptic Density in Binge Eating Disorder (BED)
暴食症 (BED) 突触密度的 11C-UCB-J PET 研究
  • 批准号:
    10673376
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
A Novel Fiber Embedded Hydrogel Temporomandibular Joint Disc Replacement
新型纤维嵌入水凝胶颞下颌关节盘置换术
  • 批准号:
    10893071
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
Novel Anti-CCR8 VHH for the Treatment of NSCLC
用于治疗 NSCLC 的新型抗 CCR8 VHH
  • 批准号:
    10760140
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
Development and validation of a high-fidelity gynecologic training platform for robotic-assisted surgery using 3D printing technology
使用 3D 打印技术开发和验证用于机器人辅助手术的高保真妇科培训平台
  • 批准号:
    10821242
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
Optimizing Carbon Ion Therapy for Pediatric CNS Tumors
优化小儿中枢神经系统肿瘤的碳离子治疗
  • 批准号:
    10735860
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
Identification of bioactive compounds from tef (Eragrostis tef) seed extracts for antioxidant properties.
从 tef(画眉草 tef)种子提取物中鉴定生物活性化合物的抗氧化特性。
  • 批准号:
    10334139
  • 财政年份:
    2022
  • 资助金额:
    $ 10.43万
  • 项目类别:
Role of TRPV4 and YAP/TAZ in Tendon Fibrosis and Engineered Tendon Development
TRPV4 和 YAP/TAZ 在肌腱纤维化和工程肌腱发育中的作用
  • 批准号:
    10546427
  • 财政年份:
    2022
  • 资助金额:
    $ 10.43万
  • 项目类别:
Identification of bioactive compounds from tef (Eragrostis tef) seed extracts for antioxidant properties.
从 tef(画眉草 tef)种子提取物中鉴定生物活性化合物的抗氧化特性。
  • 批准号:
    10553205
  • 财政年份:
    2022
  • 资助金额:
    $ 10.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了