Collaborative Research: A paradigm for dimension reduction with respect to a general functional

协作研究:关于通用函数的降维范例

基本信息

项目摘要

The proposed research aims to developing a general formulation and the related methods for sufficient dimension reduction (SDR) where a specific functional (or parameter) of the conditional distribution is of interest. The past two decades have seen vigorous development of the SDR methods and have accrued a striking record of their successful applications. However, to a large extent these methods treat the conditional distribution as the object of interest, without discriminating between parameter of interest and nuisance parameter. While there are methods that target statistical functionals, they are specific to the parameter in consideration and as such are difficult to apply to other parameters. The investigators propose a new paradigm for SDR that focuses on a functional of the conditional distribution, which can be any one in a very wide class that covers most of applications. In addition, the investigators propose to develop a coherent collection of associated techniques for estimation, computation, and asymptotic inference.High throughput technologies that produce massive amount of complex and high-dimensional data are increasingly prevalent in such diverse areas as business, government administration, environmental studies, machine learning, and bioinformatics. These provide considerable momentum in the Statistics community to develop new theories and methodologies, and to reformulate the existing ones, that are capable of discovering critical evidence from high-dimensional and massive data. SDR is a recent area of statistical research that arose amidst, and has been propelled by, these new demands. The investigators propose to reformulate the theories and methodologies of SDR so that they can be specifically tailored to target to be estimated. This new paradigm not only synthesizes, broadens, and deepens the recent advances in SDR, but brings the understanding of SDR on a par with classical statistical inference theory, by following the tradition of sufficiency, efficiency, information, parameter of interests, and nuisance parameters, which are the key ideas that has helped to propel classical inference to its maturity.
该研究的目的是开发一个通用的配方和相关的方法,充分降维(SDR)的条件分布的特定功能(或参数)是感兴趣的。特别提款权方法在过去的二十年里得到了蓬勃发展,并取得了令人瞩目的成功应用。然而,在很大程度上,这些方法将条件分布视为感兴趣的对象,而不区分感兴趣的参数和讨厌的参数。虽然有针对统计泛函的方法,但它们特定于所考虑的参数,因此难以应用于其他参数。研究人员提出了一种新的SDR范式,专注于条件分布的泛函,它可以是涵盖大多数应用的非常广泛的类别中的任何一个。此外,研究人员还建议开发一套用于估计、计算和渐近推理的相关技术。产生大量复杂和高维数据的高吞吐量技术在商业、政府管理、环境研究、机器学习和生物信息学等不同领域越来越普遍。这些为统计界提供了相当大的动力,以开发新的理论和方法,并重新制定现有的理论和方法,这些理论和方法能够从高维和海量数据中发现关键证据。特别提款权是在这些新需求中产生并受到这些新需求推动的一个最新统计研究领域。研究人员建议重新制定特别提款权的理论和方法,使它们能够专门针对要估计的目标。这种新的范式不仅综合、拓宽和深化了SDR的最新进展,而且通过遵循充分性、效率、信息、感兴趣的参数和讨厌的参数的传统,使SDR的理解与经典的统计推断理论相提并论,这些都是推动经典推断走向成熟的关键思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangrong Yin其他文献

NON‐PARAMETRIC ESTIMATION OF DIRECTION IN SINGLE‐INDEX MODELS WITH CATEGORICAL PREDICTORS
Sufficient dimension reduction using Hilbert–Schmidt independence criterion
  • DOI:
    https://doi.org/10.1016/j.csda.2017.05.002
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Yuan Xue;Nan Zhang;Xiangrong Yin;Haitao Zheng
  • 通讯作者:
    Haitao Zheng
Ensemble sufficient dimension folding methods for analyzing matrix-valued data
用于分析矩阵值数据的集成足够维度折叠方法
Canonical correlation analysis based on information theory
  • DOI:
    10.1016/s0047-259x(03)00129-5
  • 发表时间:
    2004-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Xiangrong Yin
  • 通讯作者:
    Xiangrong Yin
Dimension folding for a functional of conditional distribution of matrix- or array-valued objects
矩阵或数组值对象的条件分布函数的维度折叠

Xiangrong Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangrong Yin', 18)}}的其他基金

CIF: Small: A Novel Paradigm of Information Extraction in Big Data Problems
CIF:小:大数据问题中信息提取的新范式
  • 批准号:
    1813330
  • 财政年份:
    2018
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
A complete sufficient dimension folding theory with novel methods
具有新颖方法的完整的足够维度折叠理论
  • 批准号:
    1205546
  • 财政年份:
    2012
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317877
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317876
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Towards Safeguarding the Emerging Miniapp Paradigm in Mobile Super Apps
合作研究:EAGER:捍卫移动超级应用中新兴的小应用范式
  • 批准号:
    2330265
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317874
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
  • 批准号:
    2318711
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: Track 1 for Catalyzing a Paradigm Shift towards an Inclusive Engineering for Community Development
合作研究:规划:促进社区发展包容性工程范式转变的轨道 1
  • 批准号:
    2247071
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317878
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Convergent Anthropocene Systems (Anthems) - A System-of-Systems Paradigm
合作研究:GCR:趋同的人类世系统(颂歌)——系统的系统范式
  • 批准号:
    2317875
  • 财政年份:
    2023
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了