A complete sufficient dimension folding theory with novel methods

具有新颖方法的完整的足够维度折叠理论

基本信息

项目摘要

This proposal is aimed at developing a general formulation and the related methods for sufficient dimension folding where predictors are matrix-/array- valued, and where a specific functional (or parameter) of the conditional distribution is of interest. The past two decades have seen vigorous development of the sufficient dimension reduction methods for vector-valued predictors, and have accrued a striking record of their successful applications. However, many data are matrix-/array-valued, sufficient dimension reduction for vector-valued predictors applying to such data will lose its sufficiency and structure, resulting difficulties in interpretation, and to a large extent these methods treat the conditional distribution as the object of interest, without discriminating between parameter of interest and nuisance parameter. The investigator proposes a new paradigm for sufficient dimension folding for matrix-/array-valued predictors that focuses on a functional of the conditional distribution, which can be any one in a very wide class that covers most of applications. In addition, the investigator proposes to develop a coherent collection of associated techniques for estimation, computation, and asymptotic inference. Recently, high throughput technologies that produce massive amount of complex and high-dimensional data are increasingly prevalent in such diverse areas as business, government administration, environmental studies, machine learning, and bioinformatics. These provide considerable momentum in the Statistics community to develop new theories and methodologies, that are capable of discovering critical evidence from high-dimensional, complex structural and massive data. Sufficient Dimension Folding is a new area of statistical research that arose amidst, and has been propelled by, these new demands. The investigator proposes to formulate the theories and methodologies of sufficient dimension folding so that they can be specifically tailored to target to be estimated. This new paradigm not only synthesizes, broadens, and deepens the recent advances in sufficient dimension folding, but brings the understanding of sufficient dimension folding on a par with classical statistical inference theory, by following the tradition of sufficiency, efficiency, information, parameter of interests, and nuisance parameters, which are the key ideas that had helped to propel classical inference to its maturity.
该提案旨在开发一种通用的公式和相关方法,用于足够的维度折叠,其中预测变量是矩阵/数组值,并且条件分布的特定函数(或参数)是感兴趣的。在过去的二十年里,矢量值预测器的充分降维方法得到了蓬勃发展,并取得了令人瞩目的成功应用记录。然而,许多数据是矩阵/数组值,对应用于此类数据的向量值预测器进行充分的降维将失去其充分性和结构,导致解释困难,并且在很大程度上这些方法将条件分布视为感兴趣的对象,而不区分感兴趣的参数和干扰参数。研究人员提出了一种新的范式,用于矩阵/数组值预测器的足够维度折叠,该范式侧重于条件分布的函数,可以是涵盖大多数应用的非常广泛的类别中的任何一个。此外,研究人员建议开发一套连贯的相关技术,用于估计、计算和渐近推理。 近年来,产生大量复杂和高维数据的高通量技术在商业、政府管理、环境研究、机器学习和生物信息学等不同领域越来越普遍。这些为统计学界发展新的理论和方法提供了巨大的动力,这些理论和方法能够从高维、复杂结构和海量数据中发现关键证据。足够维度折叠是统计研究的一个新领域,它是在这些新需求中产生并受到这些新需求推动的。研究人员建议制定足够维度折叠的理论和方法,以便它们可以针对要估计的目标进行专门定制。这种新范式不仅综合、拓宽和深化了充分维度折叠方面的最新进展,而且遵循充分性、效率、信息、兴趣参数和干扰参数的传统,使对充分维度折叠的理解与经典统计推理理论相提并论,这些传统是帮助经典推理走向成熟的关键思想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangrong Yin其他文献

NON‐PARAMETRIC ESTIMATION OF DIRECTION IN SINGLE‐INDEX MODELS WITH CATEGORICAL PREDICTORS
Sufficient dimension reduction using Hilbert–Schmidt independence criterion
  • DOI:
    https://doi.org/10.1016/j.csda.2017.05.002
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Yuan Xue;Nan Zhang;Xiangrong Yin;Haitao Zheng
  • 通讯作者:
    Haitao Zheng
Ensemble sufficient dimension folding methods for analyzing matrix-valued data
用于分析矩阵值数据的集成足够维度折叠方法
Canonical correlation analysis based on information theory
  • DOI:
    10.1016/s0047-259x(03)00129-5
  • 发表时间:
    2004-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Xiangrong Yin
  • 通讯作者:
    Xiangrong Yin
Dimension folding for a functional of conditional distribution of matrix- or array-valued objects
矩阵或数组值对象的条件分布函数的维度折叠

Xiangrong Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangrong Yin', 18)}}的其他基金

CIF: Small: A Novel Paradigm of Information Extraction in Big Data Problems
CIF:小:大数据问题中信息提取的新范式
  • 批准号:
    1813330
  • 财政年份:
    2018
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: A paradigm for dimension reduction with respect to a general functional
协作研究:关于通用函数的降维范例
  • 批准号:
    0806120
  • 财政年份:
    2008
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant

相似海外基金

Discovering how autophagy is sufficient to extend yeast replicative lifespan
发现自噬如何足以延长酵母复制寿命
  • 批准号:
    10744971
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
Self-sufficient reductive dehalogenases for bioremediation
用于生物修复的自给自足的还原脱卤酶
  • 批准号:
    BB/X007952/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grant
Development of an energy self-sufficient hybrid electrochemical membrane bioreactor
能源自给自足的混合电化学膜生物反应器的开发
  • 批准号:
    22K18296
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Discovery Grants Program - Individual
The RNA interactome necessary and sufficient for Orbivirus genome packaging
RNA 相互作用组对于 Orbivirus 基因组包装是必要且充分的
  • 批准号:
    BB/V008846/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Research Grant
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
  • 批准号:
    10606640
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
Supraphysiologic Shear Stresses Associated with Cardiopulmonary Bypass are Sufficient to Activate RIKP3 Signaling
与心肺绕道相关的超生理剪切应力足以激活 RIKP3 信号传导
  • 批准号:
    10446535
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
CAREER: Inferring Minimal but Sufficient Environment Models from Natural Language and Semantic Perception for Collaborative Robots in Dynamic Environments
职业:从动态环境中的协作机器人的自然语言和语义感知推断最小但足够的环境模型
  • 批准号:
    2144804
  • 财政年份:
    2022
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Discovery Grants Program - Individual
CPS: Medium: Sufficient Statistics for Learning Multi-Agent Interactions
CPS:中:学习多智能体交互的足够统计数据
  • 批准号:
    2125511
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了