Collaborative Research: Small time behavior of multiscale diffusions motivated by stochastic volatility models

合作研究:随机波动模型驱动的多尺度扩散的小时间行为

基本信息

  • 批准号:
    0806461
  • 负责人:
  • 金额:
    $ 21.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The well-established theory of large deviations describes the small probabilities that a diffusion process moves from one point to another part of the state space in a short time. This is particularly interesting in the context of financial mathematics in which one is interested in the behavior of the stock price in a short time. For instance, this will be relevant to option prices at short maturities, or probabilities to reach a default level in a short time. Multi-factor stochastic volatility models have been studied intensively in the past years, and they have been found very useful to describe the observed smile/skew of implied volatilities. At short maturities the rate functions appearing in the large deviation estimates will usually not be given in closed form, and will depend on some details of the models like volatility of volatility. On the other hand it has been shown that multiscale stochastic volatility models and their asymptotics are very useful to obtain accurate approximations of option prices and hedging strategies which can be efficiently computed with only a few group parameters easy to calibrate to data. It is then natural to study asymptotic expansions of the rate function in the regime of separation of volatility time scales. In particular, the regime in which the maturity is small but large compared to the mean-reversion time of the stochastic volatility factor turns out to be very interesting and challenging. The research supported by this award is about deriving and fully justifying such asymptotic expansion. The problem will be formulated as logarithmic asymptotic for exponential moments of certain functionals of diffusion processes, which in turn is connected with homogenization/averaging theory for Hamilton-Jacobi-Bellman equations. The collaborative nature of the research combines expertise in the area of multiscale stochastic volatility modeling, in the areas of large deviation theory, and viscosity solution and homogenization/averaging for HJB equations. This award will support a multidisciplinary research effort. It concerns very practical modeling issues in the area of financial mathematics as well as theoretical convergence results in the theories of large deviations for diffusion processes and homogenization of nonlinear partial differential equations. It is expected that the results obtained on small default probabilities will be very helpful in understanding default mechanisms in credit markets. This research therefore is very timely. The senior PI at UCSB is actively involved in organizing conferences, workshops and special sessions which promote interaction between academic researchers and practitioners. The research will be given full exposure in the activities of the newly created Center for Research in Financial Mathematics and Statistics (CRFMS) at UCSB. The collaborative project will also serve as a training tool for graduate students and postdoctoral fellows at both institutions, UCSB and KU.
成熟的大偏差理论描述了扩散过程在短时间内从状态空间的一个点移动到另一个部分的小概率。这在金融数学的背景下特别有趣,因为人们对股票价格在短时间内的行为感兴趣。例如,这将与短期到期的期权价格或在短时间内达到违约水平的概率有关。多因素随机波动率模型在过去的几年中得到了广泛的研究,并且发现它们非常有用地描述了所观察到的隐含波动率的微笑/偏斜。在短期内,出现在大偏差估计中的利率函数通常不会以封闭形式给出,并且将取决于模型的一些细节,如波动率的波动率。另一方面,它已被证明,多尺度随机波动率模型及其渐近性是非常有用的,以获得准确的近似的期权价格和对冲策略,可以有效地计算只有几个组参数容易校准的数据。然后,很自然地研究在波动率时间尺度分离的制度下的利率函数的渐近展开。特别是,在该制度中,成熟度是小的,但大的随机波动率因子的均值回复时间相比,原来是非常有趣和具有挑战性的。该奖项支持的研究是关于推导和充分证明这种渐近展开。这个问题将被制定为对数渐近的某些泛函的扩散过程,这反过来又与均匀化/平均理论的Hamilton-Jacobi-Bellman方程的指数矩。 该研究的协作性质结合了多尺度随机波动率建模领域的专业知识,在大偏差理论领域,以及HJB方程的粘性解和均匀化/平均化。该奖项将支持多学科的研究工作。它涉及非常实际的建模问题,在金融数学领域,以及理论上的收敛结果的理论大偏差的扩散过程和均匀化的非线性偏微分方程。我们期望在小违约概率下得到的结果对理解信贷市场中的违约机制有很大帮助。因此,这项研究非常及时。UCSB的高级PI积极参与组织会议,研讨会和特别会议,促进学术研究人员和从业人员之间的互动。该研究将在UCSB新成立的金融数学与统计研究中心(CRFMS)的活动中得到充分的曝光。该合作项目还将作为UCSB和KU这两个机构的研究生和博士后研究员的培训工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean-Pierre Fouque其他文献

La convergence en loi pour les processus à valeurs dans un espace nucléaire

Jean-Pierre Fouque的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean-Pierre Fouque', 18)}}的其他基金

Systemic Risk and Mean Field Games
系统性风险和平均场博弈
  • 批准号:
    1814091
  • 财政年份:
    2018
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
PIMS Summer School 2016 in Financial Mathematics
2016 年 PIMS 金融数学暑期学校
  • 批准号:
    1613004
  • 财政年份:
    2016
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Systemic Risk and Nonlinear Problems in Financial Mathematics
金融数学中的系统性风险和非线性问题
  • 批准号:
    1409434
  • 财政年份:
    2014
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Financial Mathematics: Nonlinear Problems and Systemic Risk
金融数学:非线性问题和系统性风险
  • 批准号:
    1107468
  • 财政年份:
    2011
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Western Conference in Mathematical Finance, Santa Barbara, CA; November 13-14, 2009
西部数学金融会议,加利福尼亚州圣巴巴拉;
  • 批准号:
    0939044
  • 财政年份:
    2009
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Convex Duality Method in Mathematical Finance - Summer 2008
NSF/CBMS 数学科学区域会议 - 数学金融中的凸对偶方法 - 2008 年夏季
  • 批准号:
    0735301
  • 财政年份:
    2007
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research on Mathematical Methods for Defaultable Instruments
FRG:可违约工具数学方法的合作研究
  • 批准号:
    0455982
  • 财政年份:
    2005
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research on Mathematical Methods for Defaultable Instruments
FRG:可违约工具数学方法的合作研究
  • 批准号:
    0628952
  • 财政年份:
    2005
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Asymptotic Methods in Financial Mathematics
金融数学中的渐近方法
  • 批准号:
    0071744
  • 财政年份:
    2000
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
  • 批准号:
    2334028
  • 财政年份:
    2024
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了