Prototype Systems of Multidimensional Conservation Laws
多维守恒定律原型系统
基本信息
- 批准号:0807569
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies two-dimensional Riemann problems for systems of conservation laws, including the Euler equations of gas dynamics. The theory of multi-dimensional conservation laws is in its infancy, and this analysis of Riemann problems is a first step that will indicate the types of singularities that arise in multi-dimensional systems. Recent numerical simulations have presented evidence of unexpectedly singular behavior at the formation points of Mach stems. These studies call for analytical confirmation, and insight will be gained from simple prototype examples. In the self-similar approach, the systems change type -- hyperbolic far from the origin ("supersonic flow") and of mixed hyperbolic-elliptic type near the origin ("subsonic region"). Analysis of the subsonic solution gives rise to free boundary problems in mixed-type partial differential equations with mixed boundary conditions (Dirichlet and oblique derivative). Earlier work solved such free boundary problems locally near shock reflection points, but only for one simple interaction (regular reflection) and only for simplified systems (where the elliptic equation decoupled from the hyperbolic system). The current project will develop new techniques for the more complicated problems that arise when the boundary condition is not uniformly oblique, and when the equations in the subsonic system do not decouple. Finally, study of a prototype example of diverging rarefactions problems will shed light on singular Mach stem formation points. Conservation laws model fundamental problems in aerodynamics and continuum mechanics. Better understanding has consequences in real world applications. For example, the large-scale numerical simulations that form the basis of weather and climate prediction and of nuclear reactor safety analysis are based on partial differential equations in the form of conservation laws. Theoretical advances, particularly in the analysis of singular behavior, will find their way into making numerical codes more efficient and more reliable. In carrying out this research, the investigators will build on success in introducing beginning researchers, including members of groups underrepresented in mathematics, to the theory of conservation laws, and in expanding their career horizons.
这个项目研究守恒律系统的二维黎曼问题,包括气体动力学的欧拉方程。 多维守恒律理论还处于起步阶段,对黎曼问题的分析是指出多维系统中出现的奇点类型的第一步。 最近的数值模拟已经提供了在马赫茎形成点处意外奇异行为的证据。 这些研究需要分析确认,并从简单的原型示例中获得洞察力。 在自相似方法中,系统改变类型--远离原点的双曲型(“超音速流”)和靠近原点的混合双曲椭圆型(“亚音速区”)。 亚音速解的分析引起混合型偏微分方程的自由边界问题与混合边界条件(狄利克雷和斜导数)。 早期的工作解决了这样的自由边界问题局部附近的激波反射点,但只有一个简单的相互作用(定期反射),并仅为简化系统(其中椭圆方程解耦的双曲系统)。 目前的项目将为边界条件不是均匀倾斜的和亚音速系统中的方程不解耦时出现的更复杂的问题开发新技术。 最后,发散稀疏问题的原型例子的研究将揭示奇异马赫干形成点。 守恒定律模拟了空气动力学和连续介质力学中的基本问题。 更好的理解在真实的世界应用中具有重要意义。 例如,构成天气和气候预测以及核反应堆安全分析基础的大规模数值模拟就是以守恒定律形式的偏微分方程为基础的。 理论的进步,特别是在奇异行为的分析,将找到自己的方式,使数字代码更有效,更可靠。 在进行这项研究时,研究人员将成功地介绍开始的研究人员,包括在数学中代表性不足的群体的成员,守恒定律的理论,并扩大他们的职业视野。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbara Keyfitz其他文献
Barbara Keyfitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbara Keyfitz', 18)}}的其他基金
Timed for a Successful Career: NSF/AWM Travel Grants for Women in the Mathematical Sciences
为职业生涯的成功做好准备:NSF/AWM 针对数学科学领域女性的旅行补助金
- 批准号:
1153905 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
AWM Travel Grants for Women in the Mathematical Sciences
AWM 为数学科学领域女性提供的旅行补助金
- 批准号:
0839954 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Prototype Systems of Multidimensional Conservation Laws
多维守恒定律原型系统
- 批准号:
0968254 - 财政年份:2009
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Multidimensional Conservation Laws and Low Regularity Solutions
多维守恒定律和低正则解
- 批准号:
0306307 - 财政年份:2003
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
POWRE: Research in Applied Analysis and Conservation Laws
POWRE:应用分析和守恒定律研究
- 批准号:
9973475 - 财政年份:1999
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Shock Stability in Systems that Change Type
数学科学:改变类型的系统的冲击稳定性
- 批准号:
9103560 - 财政年份:1991
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Conservation Laws that Change Type
数学科学:改变类型的守恒定律
- 批准号:
8903768 - 财政年份:1989
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonstrictly Hyperbolic Conservation Laws and Applications of Singularity Theory
数学科学:非严格双曲守恒定律及奇点理论的应用
- 批准号:
8504031 - 财政年份:1985
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Combustion Problems and Reaction-Diffusion Equations
燃烧问题和反应扩散方程
- 批准号:
8103441 - 财政年份:1981
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
A Problem in Transonic Small-Disturbance Theory and a Problem in Non-Strictly Hyperbolic Conservation Laws
跨音速小扰动理论中的一个问题和非严格双曲守恒定律中的一个问题
- 批准号:
7704164 - 财政年份:1977
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Optical Wireless Sensor Systems with Hierarchical and Multidimensional Modulation for Smart Factories
适用于智能工厂的具有分层和多维调制的光学无线传感器系统
- 批准号:
21H01323 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on connectivity of landform and vegetation systems in watersheds using Multidimensional High-definition Earth Surface Data
利用多维高清地表数据研究流域地貌和植被系统的连通性
- 批准号:
21H00625 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multidimensional Hypergeometric Integrals, Quantum Differential Equations, and Integrable Systems
多维超几何积分、量子微分方程和可积系统
- 批准号:
1954266 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Multidimensional optical spectroscopic studies of condensed phase systems
凝聚相系统的多维光学光谱研究
- 批准号:
2444836 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Multidimensional large-scale, high-density in vitro recording facility for the investigation of neural systems function
用于研究神经系统功能的多维大规模、高密度体外记录设备
- 批准号:
BB/T017627/1 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Research Grant
Theoretical study of nonlinear optical responses of ultracold atomic systems: towards a high-resolution coherent multidimensional spectroscopy investigation of quantum many-body effects
超冷原子系统非线性光学响应的理论研究:量子多体效应的高分辨率相干多维光谱研究
- 批准号:
19K14638 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimized Active Multidimensional Control Strategy for Nonlinear Vibration Control of Engineering Systems
工程系统非线性振动控制的优化主动多维控制策略
- 批准号:
RGPIN-2015-06353 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Optimized Active Multidimensional Control Strategy for Nonlinear Vibration Control of Engineering Systems
工程系统非线性振动控制的优化主动多维控制策略
- 批准号:
RGPIN-2015-06353 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional Hamiltonian Systems and their Deformations
多维哈密顿系统及其变形
- 批准号:
2132360 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Optimized Active Multidimensional Control Strategy for Nonlinear Vibration Control of Engineering Systems
工程系统非线性振动控制的优化主动多维控制策略
- 批准号:
RGPIN-2015-06353 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Grants Program - Individual