Multidimensional Conservation Laws and Low Regularity Solutions
多维守恒定律和低正则解
基本信息
- 批准号:0306307
- 负责人:
- 金额:$ 17.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Free boundary problems arising in shock reflection have been solved for regular shockreflection in a model equation; the method will be extended to a larger set of equations andother types of shock reflection. Solving a prototype problem for the gas dynamics equationsis in sight. Other two-dimensional Riemann problems, such as reflection of rarefaction wavesat the sonic line, will be considered. A different free boundary problem, with connections tonew kinds of singularities, occurs in this case. By constrast with shock reflection problems,in which the complicated behavior occurred in the subsonic region and was analysed usingHolder estimates for degenerate elliptic equations, the interaction of rarefaction waves withthe sonic boundary involves study of degenerate hyperbolic eigenvalue problems.The PI has had success, particularly with women graduate students and postdoctoralvisitors, in introducing beginning researchers to her areas in conservation laws, and in helpingto expand their career horizons. It is planned to mentor two postdocs (at least one, alreadyselected, is a woman), including encouraging their teaching and professional development inways such as writing proposals, refereeing papers, and participating in conferences.In addition, the second research topic is strongly interdisciplinary, and the PI's work hasaroused some positive interest in the multifluid science community. The PI and co-workerswill attend and make presentations at engineering conferences, write articles for journals onmultiphase flow to explain the results, and organize sessions at conferences to bring togethermathematical, computational and experimental researchers in multifluid science.
对于模型方程中的规则激波反射,激波反射中出现的自由边界问题已经得到了解决,这种方法将推广到更大的方程组和其它类型的激波反射。求解气体动力学方程的原型问题指日可待。其他二维黎曼问题,如稀疏波在声速线上的反射,也将被考虑。一个不同的自由边界问题,连接到新的奇异点,出现在这种情况下。通过对激波反射问题的讨论,其中复杂的行为发生在亚音速区域,并使用退化椭圆方程的Holder估计进行了分析,稀疏波与音速边界的相互作用涉及退化双曲本征值问题的研究。PI已经成功地,特别是对女研究生和博士后访问者,在介绍开始研究人员到她的守恒定律领域,and in helping帮助to expand扩大their其career事业horizontal视野.计划指导两名博士后(至少有一名,已经选定,是女性),包括鼓励他们的教学和专业发展的方式,如写提案,论文评审,并参加会议。此外,第二个研究课题是强烈的跨学科,PI的工作已经引起了多流体科学界的一些积极的兴趣。PI和同事将出席工程会议并在会议上发表演讲,为多相流期刊撰写文章以解释结果,并在会议上组织会议,将多流体科学中的数学,计算和实验研究人员聚集在一起。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbara Keyfitz其他文献
Barbara Keyfitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbara Keyfitz', 18)}}的其他基金
Timed for a Successful Career: NSF/AWM Travel Grants for Women in the Mathematical Sciences
为职业生涯的成功做好准备:NSF/AWM 针对数学科学领域女性的旅行补助金
- 批准号:
1153905 - 财政年份:2013
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
AWM Travel Grants for Women in the Mathematical Sciences
AWM 为数学科学领域女性提供的旅行补助金
- 批准号:
0839954 - 财政年份:2009
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Prototype Systems of Multidimensional Conservation Laws
多维守恒定律原型系统
- 批准号:
0968254 - 财政年份:2009
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Prototype Systems of Multidimensional Conservation Laws
多维守恒定律原型系统
- 批准号:
0807569 - 财政年份:2008
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
POWRE: Research in Applied Analysis and Conservation Laws
POWRE:应用分析和守恒定律研究
- 批准号:
9973475 - 财政年份:1999
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Shock Stability in Systems that Change Type
数学科学:改变类型的系统的冲击稳定性
- 批准号:
9103560 - 财政年份:1991
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Conservation Laws that Change Type
数学科学:改变类型的守恒定律
- 批准号:
8903768 - 财政年份:1989
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonstrictly Hyperbolic Conservation Laws and Applications of Singularity Theory
数学科学:非严格双曲守恒定律及奇点理论的应用
- 批准号:
8504031 - 财政年份:1985
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Combustion Problems and Reaction-Diffusion Equations
燃烧问题和反应扩散方程
- 批准号:
8103441 - 财政年份:1981
- 资助金额:
$ 17.9万 - 项目类别:
Continuing Grant
A Problem in Transonic Small-Disturbance Theory and a Problem in Non-Strictly Hyperbolic Conservation Laws
跨音速小扰动理论中的一个问题和非严格双曲守恒定律中的一个问题
- 批准号:
7704164 - 财政年份:1977
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
相似海外基金
Exploring Phases of Matter With Restrictive Conservation Laws: Anomalies, Topology, and Dynamics
用限制性守恒定律探索物质相:异常、拓扑和动力学
- 批准号:
2313858 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Regularity and Approximation of Solutions to Conservation Laws
守恒定律解的正则性和近似性
- 批准号:
2306926 - 财政年份:2023
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Entropy-Stable Time-Stepping for Conservation Laws
守恒定律的熵稳定时间步进
- 批准号:
575539-2022 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws
基于高效神经网络的双曲守恒定律数值方案
- 批准号:
2208518 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Standard Grant
Conservation laws in microscopic wetting: from equilbrium systems to nonequilibrium systems
微观润湿守恒定律:从平衡系统到非平衡系统
- 批准号:
22H01400 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of entropy solutions to the Cauchy problem for conservation laws
守恒定律柯西问题熵解的稳定性
- 批准号:
22K03349 - 财政年份:2022
- 资助金额:
$ 17.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary
具有整体和边界守恒定律的六吴模型结构保持方案的设计与分析
- 批准号:
21K20314 - 财政年份:2021
- 资助金额:
$ 17.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up