Analysis and Control of Complex Behavior: Linear Transfer Operator Approach

复杂行为的分析与控制:线性传递算子方法

基本信息

  • 批准号:
    0807666
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

This proposal introduces a novel framework for the analysis and control of nonlinear systems exhibiting complex dynamics. The underlying idea of the framework is to study the evolution of sets in the phase space as opposed to the conventional point-wise approach. The advantage of the approach is that the evolution of sets is linear and is described by a linear transfer Perron-Frobenius operator. The linear nature of the framework allows us to carry our intuition from linear systems, a mature area of research, to nonlinear systems. A perfect example is the introduction of Lyapunov measure as a new tool to verify a set-theoretic notion of ?almost everywhere? stability in nonlinear systems. Lyapunov measure is shown to be dual to the Lyapunov function and a linear program using the finite dimensional approximation of the Perron-Frobenius operator is proposed for its computation. The proposed research exploits the linearity of the framework for the model order reduction and parameter identification in systems exhibiting complex dynamics with applications in jet engines. The framework also provides a systematic procedure based on the linear programming for the control of complex dynamics. The proposed research uses this procedure for the problem of control of mixing in fluid flows with potential application in analyzing the transport and mixing properties of large-scale oceanographic and atmospheric flows. The success of this research will result in a new set of tools and methods that are general enough to be applied in diverse fields, such as fluid dynamics and mechanical systems. The reduced order model in jet engines will be used in better control design, which ultimately results in less fuel consumption and increased life of engines. The improved control algorithm for mixing will benefit the pharmaceutical, petrochemical, transportation, and power generation industries among others. The PI?s collaboration with United Technologies Research Center will help in transferring the know-how from industry to academia, and vice versa. As the part of the education plan, the PI will introduce interdisciplinary courses on nonlinear dynamics at the undergraduate and graduate levels. By serving as a faculty mentor for the special interest group in robotics, the PI will help increase the involvement of undergraduate students in research.
该建议介绍了一种新的框架,表现出复杂的动态非线性系统的分析和控制。该框架的基本思想是研究相空间中集合的演化,而不是传统的逐点方法。该方法的优点是集合的演化是线性的,并且由线性转移Perron-Frobenius算子描述。框架的线性性质使我们能够将我们的直觉从线性系统(一个成熟的研究领域)带到非线性系统。一个完美的例子是引入李雅普诺夫测度作为一种新的工具,以验证一套理论的概念?几乎所有地方?非线性系统的稳定性证明了李雅普诺夫测度与李雅普诺夫函数是对偶的,并提出了一个线性规划,利用Perron-Frobenius算子的有限维近似来计算李雅普诺夫测度。所提出的研究利用线性的框架模型降阶和参数识别系统表现出复杂的动态与应用在喷气发动机。该框架还提供了一个系统的过程,基于线性规划的控制复杂的动态。拟议的研究使用此程序的控制问题的混合在流体流动与潜在的应用分析大规模的海洋和大气流动的运输和混合特性。这项研究的成功将产生一套新的工具和方法,这些工具和方法足够通用,可以应用于不同的领域,如流体动力学和机械系统。在喷气发动机中的降阶模型将用于更好的控制设计,最终导致更少的燃料消耗和增加发动机的寿命。改进的混合控制算法将使制药、石化、交通和发电等行业受益。私家侦探?与联合技术研究中心的合作将有助于将技术从工业界转移到学术界,反之亦然。作为教育计划的一部分,PI将在本科和研究生阶段引入非线性动力学跨学科课程。通过担任机器人技术特殊兴趣小组的教师导师,PI将有助于增加本科生参与研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Umesh Vaidya其他文献

Data-driven transient stability analysis using the Koopman operator
  • DOI:
    10.1016/j.ijepes.2024.110307
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amar Ramapuram Matavalam;Boya Hou;Hyungjin Choi;Subhonmesh Bose;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya
Synthesizing Controller for Safe Navigation using Control Density Function
使用控制密度函数合成安全导航控制器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Moyalan;S. Narayanan;Andrew Zheng;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya
Identifying lateral stability regions in vehicle dynamics: a Koopman spectral approach
Data-Driven Modeling and Experimental Validation of Autonomous Vehicles Using Koopman Operator: Distribution A: Approved for Public Release; Distribution Unlimited. OPSEC # 7248
使用 Koopman 算子的自动驾驶车辆的数据驱动建模和实验验证:分布 A:批准公开发布;
Spectral Koopman Method for Identifying Stability Boundary
识别稳定边界的谱库夫曼方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bhagyashree Umathe;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya

Umesh Vaidya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Umesh Vaidya', 18)}}的其他基金

Collaborative Research: Dynamic Data Analytics for the Power Grid via Koopman and Perron-Frobenius Operators
合作研究:通过 Koopman 和 Perron-Frobenius 算子对电网进行动态数据分析
  • 批准号:
    2031573
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: A Unified System Theoretic Framework for Cyber Attack-Resilient Power Grid
CPS:协同:协作研究:抵御网络攻击的电网统一系统理论框架
  • 批准号:
    1329915
  • 财政年份:
    2013
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Stability analysis and control of uncertain network controlled system in nonequilibrium
职业:非平衡状态下不确定网络控制系统的稳定性分析与控制
  • 批准号:
    1150405
  • 财政年份:
    2012
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Fundamental limitations and complex dynamics in nonlinear network systems with uncertainty
不确定性非线性网络系统的基本限制和复杂动力学
  • 批准号:
    1002053
  • 财政年份:
    2010
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
The analysis of control mechanisms by HP1 on the spatial activity of the chromosomal passenger complex
HP1对染色体乘客复合物空间活性的控制机制分析
  • 批准号:
    19K16047
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis and control of large scale complex networks
大规模复杂网络分析与控制
  • 批准号:
    2107279
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Studentship
Analysis and control of complex interconnected systems
复杂互连系统的分析与控制
  • 批准号:
    418501-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and control of complex interconnected systems
复杂互连系统的分析与控制
  • 批准号:
    418501-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of epidemic spreading and infection control with complex network theory
复杂网络理论分析疫情传播与感染控制
  • 批准号:
    15K16061
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Tools for the analysis, design and decentralized control of complex systems: from decomposition-aggregations to mean field control
用于复杂系统分析、设计和分散控制的工具:从分解聚合到平均场控制
  • 批准号:
    6820-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了