CAREER: Stability analysis and control of uncertain network controlled system in nonequilibrium

职业:非平衡状态下不确定网络控制系统的稳定性分析与控制

基本信息

  • 批准号:
    1150405
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

For uncertain network controlled dynamical systems operating away from equilibrium, the proposed research will discover analytical methods and computational tools for the a) prediction of instabilities in network systems with multiple sources of uncertainties; b) identification of feedback mechanisms and critical parameters responsible for the emergence of nonequilibrium dynamics in networks; c) design of controller for a class of network control dynamical systems. The theoretical discovery of this proposal is motivated with regard to its application to the electric power grid, for the computation of stability margin and for online transient stability analysis in power systems.Intellectual Merit: The proposed research is in the unification and development of methods and tools from the ergodic theory of dynamical systems and control approaches for the purpose of its application to network controlled dynamical systems with uncertainty. The distinctive feature of our proposed approach is that it treats several aspects of uncertainty amplification specific to networked systems in a unified way. Namely, it allows us to handle the uncertainty of the communication links, the uncertainty in the system interactions, and the uncertainty in the networked system evolution. This unified framework has allowed the PI to make two fundamental contributions for the analysis and control of uncertain nonlinear systems over networks. The first contribution is in the use of ergodic theory-based framework to provide linear programming-based analytical and computational solution for stability verification and control design of complex nonequilibrium dynamics in nonlinear system. The second contribution arises in the derivation of fundamental limitation results for the stabilization and observation of nonlinear systems with uncertainty at the input and output channels. The PI propose to further extend these methods to discover analytical methods and computational tools for the analysis and control of network controlled dynamical systems with particular focus on addressing two main challenges, namely uncertainty and self-emergent nonequilibrium dynamics in the network systems.Broader Impact: The theoretical and computational tools developed in the proposal have applications in the emerging areas of network systems, including biological and social networks. Our results on identification of feedback mechanisms for the emergence of complex nonequilibrium dynamics in network systems can be applied to biological networks to help understand the consequence of genetic modification, and for guiding experiments design for modifying such behavior. For social networks such as disease spread, the proposed uncertainty-based modeling framework and theoretical research can be used to provide conditions for the prevention or spread of an epidemic. The interdisciplinary nature of this project will provide ample opportunities to train graduate students in leading-edge research that cuts across multiple disciplines. These interdisciplinary components will be integrated into a larger educational effort to offer engineering students a solid foundation and training in complex systems, as well as in control and dynamics.
对于偏离平衡点运行的不确定网络控制动力系统,本研究将为以下问题提供分析方法和计算工具:a)预测具有多个不确定性源的网络系统的不稳定性; B)识别导致网络非平衡动力学出现的反馈机制和关键参数; c)一类网络控制动力系统的控制器设计。该提案的理论发现是出于其在电网中的应用、稳定裕度计算和电力系统在线暂态稳定分析方面的动机。智力优点:本文的研究工作是统一和发展动力系统遍历理论和控制方法的方法和工具,以将其应用于网络控制动力系统,不确定性我们提出的方法的显着特点是,它对待特定于网络系统的不确定性放大的几个方面以统一的方式。也就是说,它允许我们处理通信链路的不确定性,系统交互的不确定性,以及网络系统演化的不确定性。这个统一的框架,使PI网络的不确定非线性系统的分析和控制作出了两个基本的贡献。第一个贡献是在使用遍历理论为基础的框架,提供了基于线性规划的分析和计算解决方案的稳定性验证和控制设计的复杂非平衡动力学的非线性系统。第二个贡献出现在基本的限制结果的稳定和观察的非线性系统的输入和输出通道的不确定性的推导。PI建议进一步扩展这些方法,以发现用于分析和控制网络控制动态系统的分析方法和计算工具,特别关注解决两个主要挑战,即网络系统中的不确定性和自发非平衡动力学。该提案中开发的理论和计算工具可应用于网络系统的新兴领域,包括生物和社交网络。我们的结果识别的反馈机制出现的复杂的非平衡动力学网络系统中,可以应用到生物网络,以帮助理解遗传修饰的后果,并指导实验设计修改这样的行为。对于疾病传播等社交网络,本文提出的基于不确定性的建模框架和理论研究可以为预防或传播流行病提供条件。该项目的跨学科性质将提供充足的机会,培养研究生在跨多个学科的前沿研究。这些跨学科的组成部分将被整合到一个更大的教育工作,为工程专业的学生提供一个坚实的基础和复杂系统的培训,以及在控制和动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Umesh Vaidya其他文献

Data-driven transient stability analysis using the Koopman operator
  • DOI:
    10.1016/j.ijepes.2024.110307
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amar Ramapuram Matavalam;Boya Hou;Hyungjin Choi;Subhonmesh Bose;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya
Synthesizing Controller for Safe Navigation using Control Density Function
使用控制密度函数合成安全导航控制器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Moyalan;S. Narayanan;Andrew Zheng;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya
Identifying lateral stability regions in vehicle dynamics: a Koopman spectral approach
Data-Driven Modeling and Experimental Validation of Autonomous Vehicles Using Koopman Operator: Distribution A: Approved for Public Release; Distribution Unlimited. OPSEC # 7248
使用 Koopman 算子的自动驾驶车辆的数据驱动建模和实验验证:分布 A:批准公开发布;
Spectral Koopman Method for Identifying Stability Boundary
识别稳定边界的谱库夫曼方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bhagyashree Umathe;Umesh Vaidya
  • 通讯作者:
    Umesh Vaidya

Umesh Vaidya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Umesh Vaidya', 18)}}的其他基金

Collaborative Research: Dynamic Data Analytics for the Power Grid via Koopman and Perron-Frobenius Operators
合作研究:通过 Koopman 和 Perron-Frobenius 算子对电网进行动态数据分析
  • 批准号:
    2031573
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: A Unified System Theoretic Framework for Cyber Attack-Resilient Power Grid
CPS:协同:协作研究:抵御网络攻击的电网统一系统理论框架
  • 批准号:
    1329915
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Fundamental limitations and complex dynamics in nonlinear network systems with uncertainty
不确定性非线性网络系统的基本限制和复杂动力学
  • 批准号:
    1002053
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Analysis and Control of Complex Behavior: Linear Transfer Operator Approach
复杂行为的分析与控制:线性传递算子方法
  • 批准号:
    0807666
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
  • 批准号:
    23K13326
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stability Analysis of Power System with Massive Power Electronic Devices
含有大量电力电子器件的电力系统稳定性分析
  • 批准号:
    DP230100801
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Targeting Menin Protein Stability In AML
靶向 AML 中的 Menin 蛋白稳定性
  • 批准号:
    10644645
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Regulation of Genome Stability and Structure by the Nucleosome Remodeler HELLS in Leukemia
核小体重塑者 HELLS 对白血病基因组稳定性和结构的调节
  • 批准号:
    10818668
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The Divorce Decline and Relationship Stability: 1970-2019
离婚率下降和关系稳定性:1970-2019
  • 批准号:
    10741358
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Identification of smooth muscle cell genes causal in atherosclerotic plaque stability and cardiovascular disease risk
鉴定导致动脉粥样硬化斑块稳定性和心血管疾病风险的平滑肌细胞基因
  • 批准号:
    10720225
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
  • 批准号:
    10793779
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
DNA helicases and associated factors in genome stability
DNA 解旋酶和基因组稳定性的相关因素
  • 批准号:
    10810234
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Defining bacterial members of the ocular surface microbiome and assessing stability over time
定义眼表微生物组的细菌成员并评估随时间推移的稳定性
  • 批准号:
    10668753
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The role of DPF2 stability in SMARCB1-deficient cancers
DPF2 稳定性在 SMARCB1 缺陷型癌症中的作用
  • 批准号:
    10751414
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了