Div-curl systems and Variational principles
Div-curl 系统和变分原理
基本信息
- 批准号:0808115
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will support the investigator's analysis of certain basic systems of equations of interest in science and engineering. Our primary topic will be boundary value problems for div-curl system on bounded regions in space. Both Maxwell's equations for an electromagnetic field and some problems in fluid mechanics are governed by this system with certain associated boundary conditions. There still are many open questions about these systems and their solutions. The proposed research centers on how to describe the mathematical properties, and approximation, of solutions of these boundary value problems. This information is needed for the development of good algorithms for the computation of these fields or flows -- and should have wide applicability for the numerical modeling of devices and equipment.Mathematically, these div-curl systems are over-determined systems of equations that only have solutions when certain compatibility conditions hold -- and often require extra data in addition to standard boundary conditions. These extra conditions include both natural analytical conditions and some subtle conditions that arise from geometrical considerations. They sometimes are known to experts on these subjects, but their statements have previously only been vaguely stated, since the precise versions require considerable geometrical and analytical detail. They have been carefully described in recent papers of the PI and his collaborators. This proposal is to support the implementation, and further development, of these results in some models that arise in applications. The proposed research will use the variational characterization of the solutions to obtain sharp results about the finite energy solutions of these systems in a number of important geometrical situations. We also intend to investigate the development of good methods for the numerical approximation of the solutions in various different geometrical configurations. A particular interest will be the analysis of the solution of certain models of ferromagnetic bodies and electrostatic discharges.
该项目将支持研究人员对科学和工程领域感兴趣的某些基本方程组的分析。我们的主要主题是空间有界区域上 div-curl 系统的边值问题。 电磁场的麦克斯韦方程和流体力学中的一些问题都由具有某些相关边界条件的系统控制。关于这些系统及其解决方案仍然存在许多悬而未决的问题。拟议的研究重点是如何描述这些边值问题的解的数学属性和近似值。这些信息是开发计算这些场或流的良好算法所必需的,并且应该对装置和设备的数值建模具有广泛的适用性。从数学上讲,这些 div-curl 系统是超定方程组,只有在满足某些兼容性条件时才有解,并且除了标准边界条件之外,通常还需要额外的数据。这些额外条件包括自然分析条件和出于几何考虑而产生的一些微妙条件。有时这些主题的专家都知道它们,但它们的陈述以前只是含糊其辞,因为精确的版本需要大量的几何和分析细节。 PI 及其合作者最近的论文中对它们进行了仔细的描述。该提案旨在支持这些结果在应用中出现的一些模型中的实施和进一步开发。拟议的研究将利用解的变分表征来获得有关这些系统在许多重要几何情况下的有限能量解的清晰结果。我们还打算研究开发各种不同几何配置中解的数值近似的良好方法。特别感兴趣的是对铁磁体和静电放电的某些模型的解决方案的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giles Auchmuty其他文献
FRONT PROPAGATION AND BANDING MODALITIES
前向传播和条带方式
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
P. Ortoleva;Giles Auchmuty;J. Chadam;J. Hettmer;E. Merino;C. H. Moore;E. Ripley - 通讯作者:
E. Ripley
Generalized Harmonic Functions and the Dewetting of Thin Films
广义谐波函数和薄膜的去湿
- DOI:
10.1007/s00245-006-0883-0 - 发表时间:
2007 - 期刊:
- 影响因子:1.8
- 作者:
Giles Auchmuty;P. Kloucek - 通讯作者:
P. Kloucek
Steklov Representations of Green’s Functions for Laplacian Boundary Value Problems
- DOI:
10.1007/s00245-016-9370-4 - 发表时间:
2016-07-25 - 期刊:
- 影响因子:1.700
- 作者:
Giles Auchmuty - 通讯作者:
Giles Auchmuty
Optimal coercivity inequalities in W1,p(Ω)
- DOI:
10.1017/s0308210500004182 - 发表时间:
2005-10 - 期刊:
- 影响因子:0
- 作者:
Giles Auchmuty - 通讯作者:
Giles Auchmuty
The S.V.D. of the Poisson Kernel
S.V.D.
- DOI:
10.1007/s00041-016-9515-5 - 发表时间:
2016 - 期刊:
- 影响因子:1.2
- 作者:
Giles Auchmuty - 通讯作者:
Giles Auchmuty
Giles Auchmuty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giles Auchmuty', 18)}}的其他基金
Steklov Spectra and Div-curl Analysis
Steklov 谱和 Div-curl 分析
- 批准号:
1108754 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Variational Methods and Applications
数学科学:变分方法及其应用
- 批准号:
9501148 - 财政年份:1995
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Variational Methods and Applications
数学科学:变分方法及其应用
- 批准号:
9302318 - 财政年份:1993
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Variational Methods and Applications
数学科学:变分方法及其应用
- 批准号:
8901477 - 财政年份:1989
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variational Methods and Applications
数学科学:变分方法及其应用
- 批准号:
8701886 - 财政年份:1987
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Variational Methods and Applications in Astrophysics and Fluid Mechanics (Mathematical Sciences)
天体物理学和流体力学(数学科学)中的变分方法及其应用
- 批准号:
8201889 - 财政年份:1982
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Travel to Attend: International Society For the Interaction Of Mechanics and Mathematics; Edinburgh, Scotland; Sept 9- 13, 1979
前往参加:国际力学与数学相互作用学会;
- 批准号:
7916387 - 财政年份:1979
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Applications of Nonlinear Analysis to Astrophysics and Biology
非线性分析在天体物理学和生物学中的应用
- 批准号:
7607273 - 财政年份:1976
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
精确零散度的curl协调谱元方法
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
Maxwell方程基于重构技术的自适应有限元
- 批准号:11901197
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of Multi-Year Surface Current Mapping Data from HF Radar: Cross Validation of Submesoscale Divergence and Wind Stress Curl
高频雷达多年表面电流测绘数据分析:亚尺度散度和风应力旋度的交叉验证
- 批准号:
2219294 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Curl mapping of rotational protein transport in cells using STICS
使用 STICS 绘制细胞内旋转蛋白质运输的卷曲图
- 批准号:
498114-2016 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
Transmission mechanims of Tomato yellow leaf curl virus
番茄黄化曲叶病毒的传播机制
- 批准号:
15K14670 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Establishment of a novel method for curing from tomato yellow leaf curl disease
番茄黄化曲叶病防治新方法的建立
- 批准号:
26660039 - 财政年份:2014
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Salient motion decomposition using potential surface in high dimensional space
高维空间中利用势面的显着运动分解
- 批准号:
25730113 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Advanced modelling for understanding and replicating edge-curl in paper machine clothing
用于理解和复制造纸机网布边缘卷曲的高级建模
- 批准号:
453208-2013 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Engage Grants Program
Identification of tomato genes and networks for resistance to Tomato yellow leaf curl virus, which threatens tomato production worldwide
番茄抗番茄黄曲叶病毒的基因和网络的鉴定,该病毒威胁着全球番茄的生产
- 批准号:
211654729 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Research Grants
Steklov Spectra and Div-curl Analysis
Steklov 谱和 Div-curl 分析
- 批准号:
1108754 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Theory, Algorithm and Appliction for H(curl) and H(div) Problems
H(curl)和H(div)问题的理论、算法和应用
- 批准号:
1115961 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant














{{item.name}}会员




