Algebraic and Geometric Topology
代数和几何拓扑
基本信息
- 批准号:0808659
- 负责人:
- 金额:$ 14.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are a web of conjectures about the surgery theoretic classification of high-dimensional manifolds, culminating in the Farrell-Jones Conjectures in K- and L-theory. The conjectures are closely related to splitting manifolds along codimension one submanifolds. This splitting problem is in turn related to nil groups in algebraic K- and L-theory. This project has several different aspects. One is to solve the connected sum problem -- when is a manifold which is homotopy equivalent to a connected sum itself a connected sum? Another is to provide a strengthening of the Farrell- Jones Conjecture in L-theory, similar to that achieved by Davis-Khan- Ranicki in K-theory. Yet another is to classify involutions on a torus, using the computation of the L-theory of the infinite dihedral group and the proof of the Farrell-Jones Conjecture in L-theory for crystallographic groups, joint with Connolly. There are some middle and low dimensions problems too, involving mapping tori of self- homotopy equivalences of lens spaces and a certain aspect of link concordance.The goal, as usual in geometric topology, is to use a variety of algebraic, geometric, and analytic techniques to find and compute invariants for classification. Geometric topology is the study of manifolds. An n-dimensional manifold is a set of points locally modeled on n-dimensional Euclidean space. For instance, a 2-manifold is a surface and looks like a plane near each point. Many physical phenomenon are represented by manifolds, and as such, understanding the global structure of a manifold, and what possible manifolds exist, is fundamental to the sciences, as well as to mathematics. Manifold theory connects with most areas of mathematics, as well as with physical phenomena such as cosmology, string theory, and classical and quantum mechanics.
关于高维流形的外科手术理论分类,有一个网络,最终在K-和L-理论中的法雷尔-琼斯猜想。 这些拓扑与沿沿着余维子流形分裂流形密切相关。 这个分裂问题又与代数K-和L-理论中的诣零群有关。 这个项目有几个不同的方面。 一个是解决连通和问题--什么时候一个同伦等价于一个连通和的流形本身是一个连通和? 另一个是在L-理论中加强Farrell- Jones猜想,类似于Davis-Khan- Ranicki在K-理论中实现的。 另一个是对环面上的对合进行分类,使用无限二面体群的L-理论的计算和结晶群的L-理论中的法雷尔-琼斯猜想的证明,与康诺利联合。 也有一些中、低维的问题,涉及到透镜空间的自同伦等价的映射环面和链接协调的某个方面。目标和几何拓扑学中一样,是使用各种代数、几何和分析技术来寻找和计算分类的不变量。几何拓扑学是研究流形的学科。n维流形是在n维欧氏空间上局部建模的一组点。例如,2-流形是一个曲面,在每个点附近看起来像一个平面。许多物理现象都是用流形来表示的,因此,理解流形的整体结构以及可能存在的流形是科学和数学的基础。 流形理论与数学的大多数领域都有联系,也与宇宙学、弦理论、经典力学和量子力学等物理现象有联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Davis其他文献
NITRATION: A SELECTIVE ELECTROCHEMICAL LABEL FOR THE DETERMINATION OF ACTIVATED AROMATICS
硝化:用于测定活化芳烃的选择性电化学标记
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
E. L. Beckett;N. Lawrence;James Davis;R. Compton - 通讯作者:
R. Compton
分子間水素結合ダイナミクスを利用した液晶性強誘電体の設計
利用分子间氢键动力学设计液晶铁电材料
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Douglas R. MacFarlane;Naoki Tachikawa;Maria Forsyth;Jennifer M. Pringle;Patrick Howlett;Gloria D. Elliott;James Davis;Masayoshi Watanabe;Patrice Simon;C. Austen Angell;芥川智行 - 通讯作者:
芥川智行
A clinical assessment of direct electrochemical urate measurements.
直接电化学尿酸盐测量的临床评估。
- DOI:
10.1016/j.talanta.2005.08.020 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jodi S. N. Dutt;C. Livingstone;M. Cardosi;S. J. Wilkins;James Davis - 通讯作者:
James Davis
Incidence of hypophosphataemia in patients on parenteral nutrition
肠外营养患者低磷血症的发生率
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Marvin;C. May;C. Livingstone;James Davis - 通讯作者:
James Davis
The discovery of an orally efficacious positive allosteric modulator of the calcium sensing receptor containing a dibenzylamine core.
发现一种口服有效的含有二苄胺核心的钙传感受体正变构调节剂。
- DOI:
10.1016/j.bmcl.2010.07.060 - 发表时间:
2010 - 期刊:
- 影响因子:2.7
- 作者:
P. Harrington;D. J. St Jean;Jeff Clarine;T. Coulter;Michael Croghan;Adam J Davenport;James Davis;C. Ghiron;J. Hutchinson;M. Kelly;Fred D Lott;J. Lu;David A. Martin;S. Morony;Steve F. Poon;Elena Portero;J. Reagan;K. Regal;A. Tasker;Minghan Wang;Yuhua Yang;Guomin Yao;Q. Zeng;C. Henley;C. Fotsch - 通讯作者:
C. Fotsch
James Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Davis', 18)}}的其他基金
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
- 批准号:
2334590 - 财政年份:2023
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
MICA: Stomasense: A New Route to the Proactive Detection and Management of Leaks within Ostomy Pouches
MICA:Stomasense:主动检测和管理造口袋内泄漏的新途径
- 批准号:
MR/W029561/1 - 财政年份:2023
- 资助金额:
$ 14.95万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Small: Improving Sanitization and Avoiding Denial of Service Through Correct and Safe Regexes
协作研究:SaTC:核心:小型:通过正确和安全的正则表达式改进清理并避免拒绝服务
- 批准号:
2135156 - 财政年份:2022
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Symposium on the Strategy for Resilient Manufacturing Ecosystems through AI
通过人工智能打造弹性制造生态系统战略研讨会
- 批准号:
2132067 - 财政年份:2021
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Boronium Ionic Liquids - Impact of Structure on Chemistry, Electrochemical Stability, Ion Dynamics, and Charge Transport
CAS:合作研究:硼离子液体 - 结构对化学、电化学稳定性、离子动力学和电荷传输的影响
- 批准号:
2102978 - 财政年份:2021
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Workshop: Aligning AI and U.S. Advanced Manufacturing Competitiveness
研讨会:人工智能与美国先进制造业竞争力的结合
- 批准号:
2049670 - 财政年份:2020
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Finite Fields and their Applications at Simon Fraser University
西蒙弗雷泽大学的有限域及其应用
- 批准号:
1905024 - 财政年份:2019
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Topology of Manifolds: Interactions between High and Low Dimensions
流形拓扑:高维和低维之间的相互作用
- 批准号:
1850620 - 财政年份:2019
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Ionic and Molecular Materials of High Thermal Stability: Design, Structure, and Function
高热稳定性离子和分子材料:设计、结构和功能
- 批准号:
1800122 - 财政年份:2018
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
Summer School on Surgery and the Classification of Manifolds
外科和歧管分类暑期学校
- 批准号:
1638464 - 财政年份:2016
- 资助金额:
$ 14.95万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Algebraic and Geometric Topology In Dimensions Three and Four
三维和四维的代数和几何拓扑
- 批准号:
2267124 - 财政年份:2019
- 资助金额:
$ 14.95万 - 项目类别:
Studentship
Problems in Geometric, Algebraic and Quantitative Topology
几何、代数和定量拓扑问题
- 批准号:
1510178 - 财政年份:2015
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
CAREER: Connections between algebraic and geometric invariants in low-dimensional topology
职业:低维拓扑中代数和几何不变量之间的联系
- 批准号:
1151671 - 财政年份:2012
- 资助金额:
$ 14.95万 - 项目类别:
Continuing Grant
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2011
- 资助金额:
$ 14.95万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2010
- 资助金额:
$ 14.95万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2009
- 资助金额:
$ 14.95万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2008
- 资助金额:
$ 14.95万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric topology
代数和几何拓扑
- 批准号:
8082-2007 - 财政年份:2007
- 资助金额:
$ 14.95万 - 项目类别:
Discovery Grants Program - Individual