RTG: Algebraic and Geometric Topology at Michigan State

RTG:密歇根州立大学的代数和几何拓扑

基本信息

  • 批准号:
    2135960
  • 负责人:
  • 金额:
    $ 193.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This project aims to enhance the training and mentoring of postdocs, graduate students, and undergraduates. It will strengthen connections among researchers at different career stages and in different research areas within algebraic and geometric topology and related disciplines. Important outcomes for the project are the development of structured feedback mechanisms for students and postdocs, expansion of professional development opportunities, increasing research collaboration amongst the graduate students, postdocs, and faculty, strengthening connections between the topology group at Michigan State University and those at peer institutions, and broadening access to graduate school for undergraduates. The activities are designed to have a lasting impact on the RTG participants as well as the broader topology research community.The project will incorporate four additional postdoctoral researchers, as well as supporting the research of twelve graduate students. Undergraduates will also be increasingly integrated into the activities of the topology group through the creation of a summer directed reading program and an undergraduate peer mentoring program. Inclusive mentoring and feedback processes for graduate students and postdocs will be introduced, as well as extensive professional development opportunities. Small groups of faculty, postdocs, and students will make extended visits to peer institutions to build stronger ties and broaden the impact of the research training group beyond the boundaries of the university. Other activities include structured vertical collaborations and new courses, seminars, and workshops, benefiting graduate students, postdocs, and faculty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目旨在加强对博士后、研究生和本科生的培训和指导。它将加强研究人员之间的联系,在不同的职业阶段,并在不同的研究领域内代数和几何拓扑学和相关学科。该项目的重要成果是为学生和博士后的结构化反馈机制的发展,扩大专业发展的机会,增加研究生,博士后和教师之间的研究合作,加强密歇根州立大学的拓扑组和那些在同行机构之间的联系,并扩大本科生进入研究生院。这些活动旨在对RTG参与者以及更广泛的拓扑研究社区产生持久的影响。该项目将包括四名额外的博士后研究人员,以及支持十二名研究生的研究。本科生也将越来越多地融入拓扑组的活动,通过创建一个夏季指导阅读计划和本科生同伴指导计划。将为研究生和博士后引入包容性的指导和反馈流程,以及广泛的专业发展机会。教师,博士后和学生的小组将扩大对同行机构的访问,以建立更强的联系,并扩大研究培训小组的影响超越大学的界限。其他活动包括结构化的纵向合作和新课程,研讨会和讲习班,使研究生,博士后和教师受益。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Hedden其他文献

Some remarks on cabling, contact structures, and complex curves
关于布线、接触结构和复杂曲线的一些评论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Hedden
  • 通讯作者:
    Matthew Hedden

Matthew Hedden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Hedden', 18)}}的其他基金

Topology and Geometry at the Interface of Dimensions 3 and 4
3 维和 4 维交界处的拓扑和几何
  • 批准号:
    2104664
  • 财政年份:
    2021
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Standard Grant
The 2017 Graduate Student Topology and Geometry Conference
2017年研究生拓扑与几何会议
  • 批准号:
    1715902
  • 财政年份:
    2017
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Standard Grant
Floer Homology, Concordance, and Complex Curves
Floer 同源性、一致性和复杂曲线
  • 批准号:
    1709016
  • 财政年份:
    2017
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Continuing Grant
CAREER: Floer Homology and Low-Dimensional Topology
职业:Floer 同调和低维拓扑
  • 批准号:
    1150872
  • 财政年份:
    2012
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Continuing Grant
Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
  • 批准号:
    0906258
  • 财政年份:
    2009
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0503335
  • 财政年份:
    2005
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Fellowship Award

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
  • 批准号:
    2891032
  • 财政年份:
    2023
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
  • 批准号:
    2211379
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
  • 批准号:
    RGPIN-2019-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
  • 批准号:
    RGPIN-2018-03880
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Discovery Development Grant
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
  • 批准号:
    2153897
  • 财政年份:
    2022
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Standard Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
  • 批准号:
    2047310
  • 财政年份:
    2021
  • 资助金额:
    $ 193.68万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了