Principles for Scalable Dynamic Visual Analytics
可扩展动态视觉分析的原则
基本信息
- 批准号:0808824
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal No: 0808824 Title: Principles for Scalable Dynamic Visual AnalyticsPI name: Jagadish, H. V. Inst: University of Illinois MichiganAbstract:The human eye is often capable of identifying interesting patterns and trends from a well-presented data set, whereas computational algorithms may have difficulties with such a task. Yet, there are limits to human ability, both with the scale of the data set in terms of objects and attributes and with dynamic changes over time. This project develops an analytic and computational framework to support the visual analysis of large-scale dynamic data with network structure. The intellectual merit of this project is in the development of a family of operators with which to reduce the size both in terms of objects and attributes of the data set to be visualized; an analysis of the properties of this family of operators to enable their effective use; and the development of algorithms and data structures to support the efficient computation of these operators. By harnessing computational power to assist the human eye in seeing patterns and trends in the data, this project has the potential to transform the way in which large dynamic data sets with network structure are analyzed today. The broader impact of the project lies in the multiple application domains where network data are ubiquitous in their presence. In particular, we plan to focus on two domains to illustrate the proposed framework; biology through protein interaction networks, and national intelligence through social networks of suspect participants. In addition, this interdisciplinary project plows the ground at the boundary of statistics and computer science, and trains graduate students at this interface, an area with great future potential.
提案编号:0808824标题:可伸缩动态视觉分析原则PI名称:Jagadish,H.V.Inst:密歇根伊利诺伊大学摘要:人眼通常能够从良好呈现的数据集中识别感兴趣的模式和趋势,而计算算法在这样的任务上可能会有困难。然而,人类的能力是有限的,无论是对象和属性方面的数据集的规模,还是随着时间的动态变化。该项目开发了一个分析和计算框架,以支持对具有网络结构的大规模动态数据的可视化分析。该项目在智力上的价值在于开发了一系列运算符,用它来减少要可视化的数据集的对象和属性的大小;分析这类运算符的属性以使它们能够有效地使用;以及开发算法和数据结构来支持这些运算符的有效计算。通过利用计算能力来帮助人眼看到数据中的模式和趋势,该项目有可能改变当今分析具有网络结构的大型动态数据集的方式。该项目更广泛的影响在于多个应用领域,在这些领域中,网络数据无处不在。特别是,我们计划将重点放在两个领域来说明拟议的框架:通过蛋白质相互作用网络的生物学,以及通过可疑参与者的社会网络的国家情报。此外,这个跨学科项目在统计学和计算机科学的边界上开拓进取,并在这个具有巨大未来潜力的领域培养研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hosagrahar Jagadish其他文献
Hosagrahar Jagadish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hosagrahar Jagadish', 18)}}的其他基金
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312931 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIVIC-PG Track B: Understanding Native American Tribal Residents Needs through Better Data and Query Systems
CIVIC-PG Track B:通过更好的数据和查询系统了解美洲原住民部落居民的需求
- 批准号:
2228275 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Fairness in Web Database Applications
III:媒介:协作研究:Web 数据库应用程序的公平性
- 批准号:
2106176 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BD Hubs: Collaborative Proposal: Midwest: Midwest Big Data Hub: Building Communities to Harness the Data Revolution
BD 中心:协作提案:中西部:中西部大数据中心:建设社区以利用数据革命
- 批准号:
1916425 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
Collaborative Research: Framework for Integrative Data Equity Systems
协作研究:综合数据公平系统框架
- 批准号:
1934565 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1741022 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Choosing a Needle in a Big Data Haystack
大数据:小:DA:大海捞针
- 批准号:
1250880 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
III: Small: Usable Databases Through Organic Technology
III:小型:通过有机技术可用的数据库
- 批准号:
1017296 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
TC: Small: Collaborative Research: User-Centric Privacy Control for Collaborative Social Media
TC:小型:协作研究:协作社交媒体的以用户为中心的隐私控制
- 批准号:
1017149 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
TC: Small: Analysis and Privacy Tools for Enterprise Database Audit Logs
TC:小型:企业数据库审计日志的分析和隐私工具
- 批准号:
0915782 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
- 批准号:
10051037 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
EU-Funded
Efficient and Scalable Processing of Dynamic Heterogeneous Graphs
动态异构图的高效且可扩展的处理
- 批准号:
FT210100303 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
ARC Future Fellowships
Towards Smart Cities: Scalable and Robust Design and Dimensioning of Secure Fog-Computing Infrastructure to Support Latency Sensitive and Dynamic IoT Applications
迈向智慧城市:安全雾计算基础设施的可扩展且稳健的设计和尺寸设计,以支持延迟敏感和动态物联网应用
- 批准号:
558695-2021 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
III: SMALL: Scalable In-Database Prescriptive Analytics for Dynamic Environments
III:小型:适用于动态环境的可扩展数据库内规范分析
- 批准号:
2211918 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: CT-DDS -- Scalable Concolic Testing of Parallel Applications With Shared Dynamic Data Structures
SHF:小型:CT-DDS——具有共享动态数据结构的并行应用程序的可扩展 Concolic 测试
- 批准号:
2226448 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Scalable and Explainable Anomaly Detection for Dynamic Graphs
动态图的可扩展且可解释的异常检测
- 批准号:
569477-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Dynamic Network Traffic Identification with Scalable and Resilient Machine Learning
通过可扩展且有弹性的机器学习进行动态网络流量识别
- 批准号:
576922-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
Novel scalable dynamic packaging technology for flight-free travel with real-time data feeds
新颖的可扩展动态包装技术,通过实时数据馈送实现免飞行旅行
- 批准号:
10000035 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
Towards Smart Cities: Scalable and Robust Design and Dimensioning of Secure Fog-Computing Infrastructure to Support Latency Sensitive and Dynamic IoT Applications
迈向智慧城市:安全雾计算基础设施的可扩展且稳健的设计和尺寸设计,以支持延迟敏感和动态物联网应用
- 批准号:
558695-2021 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scalable Algorithms for Bayesian On-Line Learning with Large-Scale Dynamic Data
用于大规模动态数据的贝叶斯在线学习的可扩展算法
- 批准号:
2015498 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant