Mathematical Foundations of Multiscale Graph Representations and Interactive Learning
多尺度图表示和交互式学习的数学基础
基本信息
- 批准号:0808847
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe analysis of large high-dimensional data sets and graphs is motivated by many important applications, such as the study of databases of images and documents, and the modeling of complex dynamical systems (e.g. transaction data, weather patterns, molecular dynamics). This research involves the development of novel mathematical techniques for extracting and visualizing information from large data sets. The data layout, visualization, and human interaction are centered around multi-scale representations, which make it possible to access the data, the derived information and the inference processes associated with it at multiple levels of resolution. The human interaction affects both the geometry and the inference processes on the data, depending on the task at hand. The successful development of these techniques will have substantial impact on any application data which lends itself to a graph representation, such as citation networks, social networks, transaction data correlations, and many aspects of biological systems like gene expression and metabolic pathways. It will also reveal new and interesting multiscale geometric structures of high-dimensional data sets and graphs, and lead to a better understanding of how to extract information from them.This research develops novel multiscale embedding techniques and algorithms for graphs and data sets, based on diffusion processes on graphs. Such processes are used to generate multiscale embeddings of a graph, at different scales, as well as to perform learning tasks, with and without human interaction. These multiscale embeddings have strong quantitative guarantees in terms of metric distortion. At the same time, multiscale bases are constructed which have provable capabilities of sparsely representing functions on the graph, making them very well suited for both visualization and learning. We demonstrate the above on data sets ranging from gene networks to document corpora.
大量高维数据集和图的分析是由许多重要的应用所激发的,例如图像和文档数据库的研究,以及复杂动力系统的建模(例如交易数据、天气模式、分子动力学)。这项研究涉及开发新的数学技术,用于从大型数据集中提取和可视化信息。数据布局、可视化和人机交互以多尺度表示为中心,这使得可以以多个分辨率级别访问数据、派生信息和与之相关的推理过程。根据手头的任务,人类交互会影响数据的几何形状和推理过程。这些技术的成功开发将对任何适合于图形表示的应用数据产生重大影响,例如引用网络,社交网络,交易数据相关性以及生物系统的许多方面,如基因表达和代谢途径。它也将揭示新的和有趣的高维数据集和图形的多尺度几何结构,并导致更好地理解如何从them.This研究开发新的多尺度嵌入技术和算法的图形和数据集,基于图上的扩散过程。这些过程用于在不同尺度上生成图的多尺度嵌入,以及在有或没有人类交互的情况下执行学习任务。这些多尺度嵌入在度量失真方面有很强的定量保证。与此同时,多尺度基础的构建具有稀疏表示功能的图上证明的能力,使他们非常适合可视化和学习。我们在从基因网络到文档语料库的数据集上展示了上述内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mauro Maggioni其他文献
A scalable framework for learning the geometry-dependent solution operators of partial differential equations
用于学习偏微分方程的几何依赖解算符的可扩展框架
- DOI:
10.1038/s43588-024-00732-2 - 发表时间:
2024-12-09 - 期刊:
- 影响因子:18.300
- 作者:
Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Natalia Trayanova;Mauro Maggioni - 通讯作者:
Mauro Maggioni
Critical Exponent of Short Even Filters andBurt-Adelson Biorthogonal Wavelets
- DOI:
10.1007/s006050070024 - 发表时间:
2000-11-15 - 期刊:
- 影响因子:0.800
- 作者:
Mauro Maggioni - 通讯作者:
Mauro Maggioni
DH-482888-001 PREDICTING PERSONALIZED CARDIAC ELECTROPHYSIOLOGY USING DEEP LEARNING
DH-482888-001 使用深度学习预测个性化心脏电生理学
- DOI:
10.1016/j.hrthm.2024.03.261 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Mauro Maggioni;Natalia A. Trayanova - 通讯作者:
Natalia A. Trayanova
PO-01-212 strongA NOVEL DEEP LEARNING MODEL FOR PATIENT-SPECIFIC COMPUTATIONAL MODELING OF CARDIAC ELECTROPHYSIOLOGY/strong
PO-01-212 一种用于患者特异性心脏电生理计算建模的强大新型深度学习模型
- DOI:
10.1016/j.hrthm.2023.03.530 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Minglang Yin;Lu Lu;Mauro Maggioni;Natalia A. Trayanova - 通讯作者:
Natalia A. Trayanova
Mauro Maggioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mauro Maggioni', 18)}}的其他基金
BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
- 批准号:
1837991 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes
ATD:高维数据、地图和动态过程的估计和异常检测
- 批准号:
1737984 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
- 批准号:
1756892 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
- 批准号:
1708353 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1708553 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1708602 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1724979 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1546392 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1522651 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1320655 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant