ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes

ATD:高维数据、地图和动态过程的估计和异常检测

基本信息

  • 批准号:
    1737984
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The project focuses on the analysis of collections of regular, hyperspectral, LiDAR, and thermal images, and multi-modal data sets, both in terms of detection of anomalies and classification tasks. The input data (such as images, spectra, etc.) for many threat detection problems is typically high-dimensional, corrupted by noise, and subject to nonlinear transformations due to environmental conditions. Automatic threat detection problems typically face the fundamental curse of dimensionality: to achieve a target level of accuracy, the number of observations required is exponential in the dimension of the data. This work focuses on the automated discovery of low-dimensional representations of the data, or at least of those features of the data that are sufficient to perform the task at hand. These representations will enable high statistical and computational performance in the above tasks even with a relatively small amount of data. The project will also focus on automatically modeling and learning interaction rules in interacting agent systems.This project entails an overarching program of research aimed at detecting and exploiting intrinsic low-dimensionality and estimating low-dimensional models for data and certain types of high-dimensional data and agent-based systems. Low-dimensional probabilistic models for high-dimensional data, arising from Hyper-Spectral Imaging (HSI), LiDAR, and Near-Infrad/Night-Vision cameras, will be constructed, enabling efficient data encoding and decoding, statistical models for detecting background noise versus signals of interest, and anomaly detection. Novel techniques for understanding dependencies across multiple sensor modalities by studying maps in high-dimensions between data collected by different sensors will be developed and tested on a variety of multi-modal data sets. Novel machine learning techniques for learning from agent systems with unknown influence functions will be developed.
该项目侧重于常规、高光谱、激光雷达和热图像以及多模态数据集的分析,包括异常检测和分类任务。许多威胁检测问题的输入数据(如图像、光谱等)通常是高维的,受到噪声的破坏,并且由于环境条件而受到非线性变换。自动威胁检测问题通常面临维度的基本诅咒:为了达到目标级别的准确性,所需的观测数量在数据的维度上呈指数级增长。这项工作的重点是自动发现数据的低维表示,或者至少是那些足以执行手头任务的数据特征。即使使用相对较少的数据量,这些表示也将在上述任务中实现较高的统计和计算性能。该项目还将关注交互代理系统中的自动建模和学习交互规则。该项目需要一个总体的研究计划,旨在检测和利用固有的低维,并估计数据和某些类型的高维数据和基于代理的系统的低维模型。将构建由高光谱成像(HSI)、激光雷达和近红外/夜视相机产生的高维数据的低维概率模型,实现高效的数据编码和解码,用于检测背景噪声与感兴趣信号的统计模型,以及异常检测。通过研究不同传感器收集的数据之间的高维地图来理解多个传感器模式之间的依赖关系的新技术将在各种多模态数据集上开发和测试。从具有未知影响函数的智能体系统中学习的新型机器学习技术将得到发展。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning by Active Nonlinear Diffusion
  • DOI:
    10.3934/fods.2019012
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Maggioni;James M. Murphy
  • 通讯作者:
    M. Maggioni;James M. Murphy
Data-driven Discovery of Emergent Behaviors in Collective Dynamics
  • DOI:
    10.1016/j.physd.2020.132542
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Maggioni;Jason D Miller;Ming Zhong
  • 通讯作者:
    M. Maggioni;Jason D Miller;Ming Zhong
Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms
  • DOI:
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Little;M. Maggioni;James M. Murphy
  • 通讯作者:
    A. Little;M. Maggioni;James M. Murphy
Nonparametric inference of interaction laws in systems of agents from trajectory data
从轨迹数据中非参数推断智能体系统中的相互作用规律
Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion
非线性扩散高光谱图像的无监督聚类和主动学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mauro Maggioni其他文献

A scalable framework for learning the geometry-dependent solution operators of partial differential equations
用于学习偏微分方程的几何依赖解算符的可扩展框架
  • DOI:
    10.1038/s43588-024-00732-2
  • 发表时间:
    2024-12-09
  • 期刊:
  • 影响因子:
    18.300
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Natalia Trayanova;Mauro Maggioni
  • 通讯作者:
    Mauro Maggioni
Critical Exponent of Short Even Filters andBurt-Adelson Biorthogonal Wavelets
  • DOI:
    10.1007/s006050070024
  • 发表时间:
    2000-11-15
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Mauro Maggioni
  • 通讯作者:
    Mauro Maggioni
DH-482888-001 PREDICTING PERSONALIZED CARDIAC ELECTROPHYSIOLOGY USING DEEP LEARNING
DH-482888-001 使用深度学习预测个性化心脏电生理学
  • DOI:
    10.1016/j.hrthm.2024.03.261
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Mauro Maggioni;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova
PO-01-212 strongA NOVEL DEEP LEARNING MODEL FOR PATIENT-SPECIFIC COMPUTATIONAL MODELING OF CARDIAC ELECTROPHYSIOLOGY/strong
PO-01-212 一种用于患者特异性心脏电生理计算建模的强大新型深度学习模型
  • DOI:
    10.1016/j.hrthm.2023.03.530
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Lu Lu;Mauro Maggioni;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova

Mauro Maggioni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mauro Maggioni', 18)}}的其他基金

BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
  • 批准号:
    1837991
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
  • 批准号:
    1708353
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1708553
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1708602
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1724979
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
  • 批准号:
    1546392
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
  • 批准号:
    1522651
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
  • 批准号:
    1320655
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
  • 批准号:
    1265920
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Freshness-marker-based estimation of vegetable freshness by nondestructive Vis-NIR spectroscopy
基于新鲜度标记的无损可见-近红外光谱法评估蔬菜新鲜度
  • 批准号:
    24K09171
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermospheric Estimation and CHaracterization with Nitric Oxide (TECHNO)
使用一氧化氮进行热层估计和表征 (TECHNO)
  • 批准号:
    2343844
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Timely Estimation of Nitrogen Oxides Emissions for Improved Monitoring and Simulation of Atmospheric Chemical Processes
职业:及时估算氮氧化物排放,以改进大气化学过程的监测和模拟
  • 批准号:
    2338758
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
A Machine Learning Framework for Concrete Workability Estimation
用于混凝土和易性评估的机器学习框架
  • 批准号:
    LP220100390
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Linkage Projects
Safety Advancing Federated Estimation of Risk using AI (SAFER AI)
使用人工智能推进安全联合风险估计 (SAFER AI)
  • 批准号:
    10093091
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了