Determining Soil Water Evaporation and Subsurface Evaporation Zones
确定土壤水蒸发和地下蒸发区
基本信息
- 批准号:0809656
- 负责人:
- 金额:$ 38.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Evaporation from the soil largely determines both water availability in terrestrial ecosystems, and the partitioning of solar radiation between sensible and latent heat. It is key to both hydrology and climate. The evaporation process is complex, involving movement and phase change of water, varying with depth and time. Following water inputs, evaporation occurs at the soil surface, controlled by atmospheric demand. As surface soil water is depleted, evaporation becomes soil-limited and shifts below the surface; nonetheless it is generally viewed as a strictly surface process. As a result, measurement methods and understanding of these near-surface phenomena have lagged behind demand for accurate data. Much current research emphasizes large-scale areal estimates of soil moisture and temperature, but poor understanding of the soil water evaporation process causes low accuracy in water and energy balances. This poor understanding is largely due to our current inability to make the needed measurements.The purpose of the proposed research is to develop and test a new approach to measure evaporation within the soil. Recently developed sensors and concepts enable us to quantify sensible heat transferred into and out of mm-scale near-surface soil layers, as well as the change in sensible heat stored within each layer. Combined with conservation of energy, these measurements can locally quantify subsurface evaporation, showing the temporal patterns of in situ evaporation. Research will test four hypotheses: (1) that a sensible heat balance method can accurately estimate the mass of water evaporated from subsurface soil layers, (2) that the heat balance method can be extended to determine the latent heat flux from the soil surface layer (0-3 mm), (3) that through combined heat and mass balance, estimates of other hydrological components (transpiration and soil water flow) will be quantified or constrained, and (4) that the sensible heat balance method can quantitatively partition ET into evaporation and transpiration. Hypotheses 1-3 will be tested with both laboratory and field experiments, and Hypothesis 4 only by field experiments. Laboratory experiments will measure soil thermal properties, water content, and water flux under a combination of 2 energy regimes, 3 surface conditions, and 3 soils. Calculated evaporative loss via heat balance will be compared to evaporation measured by mass balance. In the field experiments, independent measurements of evaporation and transpiration will allow rigorous testing of heat balance estimates of transpiration and soil water evaporation.The intellectual merit of the proposed work is a new measurement-based methodology for quantifying soil water evaporation. The proposed research addresses current knowledge gaps by developing and testing in situ soil water evaporation measurement with novel sensors and analysis. Information obtained in the study will elucidate important evaporative processes. The research will quantify observation of soil water evaporation at and below the soil surface. This represents a notable advancement over descriptions of evaporation as a surface-only process.The proposed work carries broader impact by providing educational, scientific, and societal opportunities. Fundamental experience is provided for an early-career scientist, graduate students (including a minority student who is a NSF AGEP Fellow), and undergraduates. Results will be widely disseminated to the scientific community via website and published articles, and measurement techniques will have immediate repercussions for weather, climate, and environmental monitoring. Achieving the project goals will significantly improve our understanding of fundamental critical-zone properties and processes, enable better environmental monitoring and management, and enhance our predictions of large-scale hydrological and climate dynamics.
土壤蒸发在很大程度上决定了陆地生态系统中水的可用性以及太阳辐射在显热和潜热之间的分配。它对于水文和气候都很关键。蒸发过程很复杂,涉及水的运动和相变,随深度和时间的变化而变化。输入水后,蒸发发生在土壤表面,受大气需求控制。随着表层土壤水的耗尽,蒸发会受到土壤的限制并转移到地表以下;尽管如此,它通常被视为严格的表面过程。因此,测量方法和对这些近地表现象的理解已经落后于对准确数据的需求。目前许多研究强调对土壤湿度和温度进行大范围的区域估计,但对土壤水分蒸发过程的了解不足导致水和能量平衡的准确性较低。这种认识不足很大程度上是由于我们目前无法进行所需的测量。拟议研究的目的是开发和测试一种测量土壤内蒸发的新方法。最近开发的传感器和概念使我们能够量化传入和传出毫米级近地表土壤层的显热,以及每层中存储的显热的变化。结合能量守恒,这些测量可以局部量化地下蒸发,显示原位蒸发的时间模式。研究将检验四个假设:(1) 感热平衡方法可以准确估计从地下土壤层蒸发的水量,(2) 热平衡方法可以扩展以确定土壤表层 (0-3 mm) 的潜热通量,(3) 通过热质平衡,可以量化或约束其他水文成分(蒸腾作用和土壤水流量)的估计,以及 (4) 显热平衡法可以定量地将ET分为蒸发量和蒸腾量。假设1-3将通过实验室和现场实验进行检验,假设4仅通过现场实验进行检验。实验室实验将在 2 种能量状态、3 种表面条件和 3 种土壤的组合下测量土壤热特性、含水量和水通量。通过热平衡计算的蒸发损失将与通过质量平衡测量的蒸发进行比较。在现场实验中,蒸发和蒸腾的独立测量将允许对蒸腾和土壤水蒸发的热平衡估计进行严格的测试。所提出的工作的智力优点是一种新的基于测量的量化土壤水蒸发的方法。拟议的研究通过使用新型传感器和分析开发和测试原位土壤水蒸发测量来解决当前的知识差距。研究中获得的信息将阐明重要的蒸发过程。该研究将量化对土壤表面及以下土壤水分蒸发的观测。与将蒸发描述为仅表面过程相比,这代表了显着的进步。拟议的工作通过提供教育、科学和社会机会而产生更广泛的影响。为早期职业科学家、研究生(包括 NSF AGEP 研究员的少数族裔学生)和本科生提供基础经验。结果将通过网站和发表的文章广泛传播给科学界,测量技术将对天气、气候和环境监测产生直接影响。实现项目目标将显着提高我们对关键区域基本特性和过程的理解,实现更好的环境监测和管理,并增强我们对大规模水文和气候动态的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Horton其他文献
Threat-agnostic resilience: Framing and applications
与威胁无关的恢复力:框架与应用
- DOI:
10.1016/j.ijdrr.2025.105535 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:4.500
- 作者:
Benjamin D. Trump;Stergios-Aristoteles Mitoulis;Sotirios Argyroudis;Gregory Kiker;José Palma-Oliveira;Robert Horton;Gianluca Pescaroli;Elizaveta Pinigina;Joshua Trump;Igor Linkov - 通讯作者:
Igor Linkov
Lithium-induced alterations in soybean nodulation and nitrogen fixation through multifunctional mechanisms
锂通过多功能机制诱导大豆结瘤和固氮的变化
- DOI:
10.1016/j.scitotenv.2023.166438 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:8.000
- 作者:
Noman Shakoor;Muzammil Hussain;Muhammad Adeel;Imran Azeem;Muhammad Arslan Ahmad;Muhammad Zain;Peng Zhang;Yuanbo Li;Wang Quanlong;Robert Horton;Yukui Rui - 通讯作者:
Yukui Rui
Estimating soil bulk density with combined commercial soil water content and thermal property sensors
利用商用土壤含水量和热性质传感器相结合估算土壤容重
- DOI:
10.1016/j.still.2019.104445 - 发表时间:
2020-02 - 期刊:
- 影响因子:6.5
- 作者:
Zhengchao Tian;Tusheng Ren;Robert Horton;Joshua L. Heitman - 通讯作者:
Joshua L. Heitman
Transport and fate of volatile organic chemicals in unsaturated, nonisothermal, salty porous media: 1. Theoretical development.
挥发性有机化学物质在不饱和、非等温、含盐多孔介质中的传输和归宿:1.理论发展。
- DOI:
10.1016/s0304-3894(99)00099-0 - 发表时间:
1999 - 期刊:
- 影响因子:13.6
- 作者:
I. Nassar;Robert Horton - 通讯作者:
Robert Horton
Development and application of the heat pulse method for soil physical measurements
- DOI:
https://doi.org/10.1029/2017RG000584 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Hailong He (何海龙);Miles Dyck;Robert Horton;Tusheng Ren;Keith L. Bristow;Jialong Lv;Bingcheng Si - 通讯作者:
Bingcheng Si
Robert Horton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Horton', 18)}}的其他基金
Is Static Soil Density a Viable Assumption for Studying Surface Hydrologic Processes?
静态土壤密度是研究地表水文过程的可行假设吗?
- 批准号:
1623806 - 财政年份:2016
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
MEASURING SOIL WATER FLUXES DUE TO EVAPORATION AND FREEZING
测量蒸发和冻结引起的土壤水通量
- 批准号:
1215864 - 财政年份:2012
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
Coupled Heat and Water Transfer in Soil
土壤中的热水耦合传递
- 批准号:
0337553 - 财政年份:2004
- 资助金额:
$ 38.24万 - 项目类别:
Continuing Grant
Introduction of Quantitative X-Ray Diffraction in Geology Curriculum at All Levels
各级地质课程中引入定量X射线衍射
- 批准号:
9153022 - 财政年份:1991
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
- 批准号:
2348995 - 财政年份:2024
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
CAREER: Introducing Dynamic Sulfur Chemistry into Hydrogels to Promote Water Retention and Healthy Microbe Growth in Soil
职业:将动态硫化学引入水凝胶中,以促进土壤中的保水性和微生物的健康生长
- 批准号:
2337376 - 财政年份:2024
- 资助金额:
$ 38.24万 - 项目类别:
Continuing Grant
ERI: Effects of urban water infrastructure and proximate soil profiles on coupled surface-subsurface hydrology
ERI:城市供水基础设施和邻近土壤剖面对地表-地下耦合水文的影响
- 批准号:
2347541 - 财政年份:2024
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
EAGER SitS: Quantifying the value of information for sensor placements to improve soil signals for agricultural water management
EAGER SitS:量化传感器放置信息的价值,以改善农业用水管理的土壤信号
- 批准号:
2427554 - 财政年份:2024
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
Visualization of Soil Water Flow Using Ground Penetrating Radar to Classify and Predict Preferential Flow
使用探地雷达可视化土壤水流以分类和预测优先流
- 批准号:
23H02325 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Cosmic Ray Neutron Sensing for Soil Water Measurements at Irrigation Decision Resolution
SBIR 第一阶段:宇宙射线中子传感,用于灌溉决策分辨率下的土壤水测量
- 批准号:
2208754 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
PFI-RP: Novel coated geotextile to enhance water drainage from soil
PFI-RP:新型涂层土工布,可增强土壤排水能力
- 批准号:
2234410 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
Collaborative Research: Vegetation assimilation as a source of mercury in a salt marsh ecosystem and implications for soil and tidal water exposures
合作研究:植被同化作为盐沼生态系统中汞的来源以及对土壤和潮汐水暴露的影响
- 批准号:
2329941 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Standard Grant
Research on the spatiotemporal modeling methods of soil and water metagenome data
水土宏基因组数据时空建模方法研究
- 批准号:
23K18513 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
- 批准号:
23KJ1244 - 财政年份:2023
- 资助金额:
$ 38.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




