oCollaborative Research: Rock Friction, Nanoindentation, and Atomic Force Microscope Experiments Focused on Understanding Earthquake Mechanics
o合作研究:岩石摩擦、纳米压痕和原子力显微镜实验,重点了解地震力学
基本信息
- 批准号:0810088
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Significance and importance of the project. The initiation of earthquakes on faults in the Earth?s crust is controlled, incredibly, by physical processes that occur at microscopic contacts between rough surfaces of rock that touch along the fault. Despite the success of empirical friction equations in describing the results of laboratory friction experiments and producing a variety of earthquake-related phenomena in computer models of earthquakes, these equations lack a physical basis. That is, the precise identity and nature of the physical mechanisms that occur at microscopic contacts, and give rise to the observed friction effects in experiments, remain unknown. The empirical nature of the descriptions reflects the difficulty of isolating and studying the physical processes at microscopic fault contacts. Without a sound physical understanding, we remain limited in our abilities to reliably apply the equations to earthquakes in nature, to obtain a better general understanding of the earthquake process, and to ultimately make reliable predictions of earthquakes. In this transformative study, we will make use of state-of-the-art materials science testing methods, namely atomic force microscopy and Nanoindentation, to provide a physical basis for friction observations at a coarser scale and thereby gain a much improved understanding of the earthquake process. This work may allow us to learn whether we are likely to be able to detect accelerating creep on faults just prior to an earthquake and thereby predict earthquakes days to hours before an earthquake, which would save many lives and mitigate damages to the built environment. From the perspective of the scientific fields of mechanics and materials science, these new insights, gained by identifying and connecting frictional behavior across many length scales, have potential application well beyond geophysics, for example, in many engineered systems, including silicon-based micromechanical devices. Technical description. The overarching goals of the proposed studies are to isolate and identify the physical mechanisms that occur at asperity contacts at frictional interfaces. A more specific major goal of our study is to understand the origin of the friction state ?evolution? effect in rate and state friction, the simplest manifestation of which is an increase in ?static? friction with the time of quasi-stationary contact. To that end, we will conduct a coordinated, interdisciplinary collaboration that will employ laboratory experiments that investigate frictional phenomena over a wide range of length scales. One outcome will be to develop constitutive equations that will allow extrapolation of these mechanisms to the elevated temperatures and longer times relevant for earthquakes. We will perform macro-scale friction experiments on rocks at Brown University, micro-scale to nano-scale indentation creep, adhesion, and friction experiments in the Nanoindenters at Oak Ridge National Laboratory, and nano-scale adhesion and friction experiments in atomic force microscopes at the University of Pennsylvania. To make connections between the different types of experiments and to isolate different origins of the state evolution effect, we will vary the same environmental conditions in all three sets of experiments. These include tests as a function of humidity, pH (in liquid), and temperature. All three environmental factors have been demonstrated to influence the evolution effect in macroscopic rock friction experiments. Nanoindentation and AFM measurements should allow us to determine the processes on an asperity scale responsible for the macroscopic behavior.
项目的意义和重要性。地震起源于地球的断层?令人难以置信的是,美国地壳是由沿着断层接触的岩石粗糙表面之间的微观接触所发生的物理过程控制的。尽管经验摩擦方程成功地描述了实验室摩擦实验的结果,并在地震的计算机模型中产生了各种与地震有关的现象,但这些方程缺乏物理基础。也就是说,在微观接触中发生的物理机制的确切身份和性质,以及在实验中引起观察到的摩擦效应,仍然是未知的。这些描述的经验性质反映了在微观断层接触处隔离和研究物理过程的困难。如果没有对物理的充分了解,我们在可靠地将这些方程应用于自然界的地震、对地震过程有更全面的了解以及最终对地震作出可靠预测方面的能力仍然有限。在这项变革性的研究中,我们将利用最先进的材料科学测试方法,即原子力显微镜和纳米压痕,为更大尺度的摩擦观察提供物理基础,从而大大提高对地震过程的理解。这项工作可以让我们了解我们是否有可能在地震发生前检测到断层上的加速蠕动,从而在地震发生前几天到几小时预测地震,这将挽救许多生命并减轻对建筑环境的破坏。从力学和材料科学科学领域的角度来看,这些通过识别和连接许多长度尺度上的摩擦行为而获得的新见解,在许多工程系统中都有潜在的应用,例如,在许多工程系统中,包括硅基微机械设备。技术描述。提出的研究的总体目标是分离和确定在摩擦界面的粗糙接触处发生的物理机制。我们研究的一个更具体的主要目标是了解摩擦状态的起源?演变?速率和状态摩擦的影响,最简单的表现是静态摩擦的增加。摩擦随准静止接触时间的变化。为此,我们将开展协调的跨学科合作,采用实验室实验来研究大范围长度尺度上的摩擦现象。一个结果将是发展本构方程,允许将这些机制外推到与地震有关的高温和更长的时间。我们将在布朗大学的岩石上进行宏观尺度的摩擦实验,在橡树岭国家实验室的纳米压痕机上进行微观到纳米尺度的压痕蠕变、粘附和摩擦实验,在宾夕法尼亚大学的原子力显微镜上进行纳米尺度的粘附和摩擦实验。为了在不同类型的实验之间建立联系,并分离出状态进化效应的不同起源,我们将在所有三组实验中改变相同的环境条件。这些测试包括湿度、pH值(液体)和温度的函数。在宏观岩石摩擦试验中,这三种环境因素均对演化效应有影响。纳米压痕和原子力显微镜测量应该允许我们确定在粗糙度尺度上负责宏观行为的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Carpick其他文献
Robert Carpick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Carpick', 18)}}的其他基金
Collaborative Research: Synthetic mucins with tunable structures and programmable interfacial behavior
合作研究:具有可调结构和可编程界面行为的合成粘蛋白
- 批准号:
2212162 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
US-Ireland R&D Partnership: Mechanics of the Formation and Function of 2D Material Pleats
美国-爱尔兰 R
- 批准号:
2041662 - 财政年份:2021
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Planning Grant: Engineering Research Center for Tribology to Create Reliable, Efficient, Sustainable Transportation
规划拨款:摩擦学工程研究中心,打造可靠、高效、可持续的运输
- 批准号:
1840457 - 财政年份:2018
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: Friction in Flatland - Contact, Adhesion, and Friction of 2D Materials
合作研究:平地摩擦 - 二维材料的接触、粘附和摩擦
- 批准号:
1761874 - 财政年份:2018
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
GOALI: Enabling Ultra-Low Viscosity Lubricants Through Fundamental Understanding of Additive Interactions and Tribofilm Growth Mechanisms: An In-Situ Study
GOALI:通过对添加剂相互作用和摩擦膜生长机制的基本了解,实现超低粘度润滑剂:原位研究
- 批准号:
1728360 - 财政年份:2017
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
2016 Gordon Research Conference on Tribology: Scientific Advancements for Critical Applications in Friction, Lubrication, and Wear; Lewiston, Maine; June 26 - July 1, 2016
2016 年戈登摩擦学研究会议:摩擦、润滑和磨损关键应用的科学进展;
- 批准号:
1642036 - 财政年份:2016
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
The Gordon Research Conference Tribology: Coupled Challenges at the Moving Interface; Bentley University; Waltham, Massachusetts; 25-28 July 2014
戈登研究会议摩擦学:移动界面的耦合挑战;
- 批准号:
1442478 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: Temperature-Dependence of Atomic-Scale Friction
合作研究:原子尺度摩擦的温度依赖性
- 批准号:
1401164 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: High-Throughput Discovery, Development, and Demonstration of Material Systems to Enable Low-Power NEMS-Based Computation
DMREF/协作研究:材料系统的高通量发现、开发和演示,以实现基于 NEMS 的低功耗计算
- 批准号:
1334241 - 财政年份:2013
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: Converging on a Physical Basis for Rate and State Friction through Nano-to-Macro-Scale Friction and Adhesion Experiments on Geological Materials
合作研究:通过地质材料的纳米到宏观摩擦和粘附实验,汇聚速率和状态摩擦的物理基础
- 批准号:
1141142 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Collaborative Research: RAPID: Fault rock and spring sampling of the 2023 Kahramanmaras, Turkey, earthquake sequence ruptures
合作研究:RAPID:2023 年土耳其卡赫拉曼马拉斯地震序列破裂的断层岩和泉水采样
- 批准号:
2335077 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Quantitative Research on the Effectiveness of Conservation Measures Taken in the Past at Rock Cliff Sculptures
摩崖造像历代保护措施有效性的定量研究
- 批准号:
23K00950 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: RAPID: Fault rock and spring sampling of the 2023 Kahramanmaras, Turkey, earthquake sequence ruptures
合作研究:RAPID:2023 年土耳其卡赫拉曼马拉斯地震序列破裂的断层岩和泉水采样
- 批准号:
2335078 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
TS: Research Technician to Support Growth of the Rice Rock Deformation Laboratory
TS:支持水稻岩石变形实验室发展的研究技术员
- 批准号:
2308632 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Block System Response to Hydraulic Loads in Rock Scour
合作研究:多块系统对岩石冲刷水力载荷的响应
- 批准号:
2342788 - 财政年份:2023
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Collaborative Research/RUI: Multi-Block System Response to Hydraulic Loads in Rock Scour
协作研究/RUI:多块系统对岩石冲刷中水力载荷的响应
- 批准号:
2218523 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Research Opportunities in Rock Deformation
REU 网站:合作研究:岩石变形的研究机会
- 批准号:
2050705 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant