Collaborative Research: Rock Friction, Nanoindentation, and Atomic Force Microscope Experiments Focused on Understanding Earthquake Mechanics
合作研究:岩石摩擦、纳米压痕和原子力显微镜实验,重点了解地震力学
基本信息
- 批准号:0810192
- 负责人:
- 金额:$ 30.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Significance and importance of the project. The initiation of earthquakes on faults in the Earth?s crust is controlled, incredibly, by physical processes that occur at microscopic contacts between rough surfaces of rock that touch along the fault. Despite the success of empirical friction equations in describing the results of laboratory friction experiments and producing a variety of earthquake-related phenomena in computer models of earthquakes, these equations lack a physical basis. That is, the precise identity and nature of the physical mechanisms that occur at microscopic contacts, and give rise to the observed friction effects in experiments, remain unknown. The empirical nature of the descriptions reflects the difficulty of isolating and studying the physical processes at microscopic fault contacts. Without a sound physical understanding, we remain limited in our abilities to reliably apply the equations to earthquakes in nature, to obtain a better general understanding of the earthquake process, and to ultimately make reliable predictions of earthquakes. In this transformative study, we will make use of state-of-the-art materials science testing methods, namely atomic force microscopy and Nanoindentation, to provide a physical basis for friction observations at a coarser scale and thereby gain a much improved understanding of the earthquake process. This work may allow us to learn whether we are likely to be able to detect accelerating creep on faults just prior to an earthquake and thereby predict earthquakes days to hours before an earthquake, which would save many lives and mitigate damages to the built environment. From the perspective of the scientific fields of mechanics and materials science, these new insights, gained by identifying and connecting frictional behavior across many length scales, have potential application well beyond geophysics, for example, in many engineered systems, including silicon-based micromechanical devices. Technical description. The overarching goals of the proposed studies are to isolate and identify the physical mechanisms that occur at asperity contacts at frictional interfaces. A more specific major goal of our study is to understand the origin of the friction state ?evolution? effect in rate and state friction, the simplest manifestation of which is an increase in ?static? friction with the time of quasi-stationary contact. To that end, we will conduct a coordinated, interdisciplinary collaboration that will employ laboratory experiments that investigate frictional phenomena over a wide range of length scales. One outcome will be to develop constitutive equations that will allow extrapolation of these mechanisms to the elevated temperatures and longer times relevant for earthquakes. We will perform macro-scale friction experiments on rocks at Brown University, micro-scale to nano-scale indentation creep, adhesion, and friction experiments in the Nanoindenters at Oak Ridge National Laboratory, and nano-scale adhesion and friction experiments in atomic force microscopes at the University of Pennsylvania. To make connections between the different types of experiments and to isolate different origins of the state evolution effect, we will vary the same environmental conditions in all three sets of experiments. These include tests as a function of humidity, pH (in liquid), and temperature. All three environmental factors have been demonstrated to influence the evolution effect in macroscopic rock friction experiments. Nanoindentation and AFM measurements should allow us to determine the processes on an asperity scale responsible for the macroscopic behavior.
项目的意义和重要性。 地震是由地球上的断层引发的?令人难以置信的是,地球的地壳受到物理过程的控制,这些物理过程发生在沿着断层接触的岩石粗糙表面之间的微观接触处。 尽管经验摩擦方程成功地描述了实验室摩擦实验的结果,并在地震的计算机模型中产生了各种与地震有关的现象,但这些方程缺乏物理基础。 也就是说,发生在微观接触的物理机制的确切身份和性质,并引起实验中观察到的摩擦效应,仍然是未知的。 描述的经验性质反映了分离和研究微观断层接触的物理过程的困难。 没有一个健全的物理理解,我们仍然在我们的能力有限,可靠地应用方程的地震在自然界中,以获得更好的一般理解的地震过程,并最终作出可靠的预测地震。 在这项变革性的研究中,我们将利用最先进的材料科学测试方法,即原子力显微镜和纳米压痕,为更粗尺度的摩擦观测提供物理基础,从而更好地了解地震过程。 这项工作可以让我们了解我们是否有可能在地震发生前检测到断层上的加速蠕变,从而在地震发生前几天到几小时预测地震,这将挽救许多生命并减轻对建筑环境的破坏。 从力学和材料科学的科学领域的角度来看,这些新的见解,通过识别和连接在许多长度尺度上的摩擦行为,有潜在的应用远远超出了电子物理学,例如,在许多工程系统,包括硅基微机械设备。技术说明。建议的研究的总体目标是隔离和识别的物理机制,发生在粗糙接触摩擦界面。 我们研究的一个更具体的主要目标是了解摩擦状态的起源?进化?影响率和国家摩擦,其中最简单的表现是增加?静电干扰?摩擦力随时间的准静态接触。 为此,我们将进行协调的跨学科合作,将采用实验室实验,研究各种长度尺度上的摩擦现象。结果之一将是开发本构方程,允许将这些机制外推到与地震相关的高温和更长时间。我们将在布朗大学的岩石上进行宏观尺度的摩擦实验,在橡树岭国家实验室的纳米压痕仪中进行微米尺度到纳米尺度的压痕蠕变、粘附和摩擦实验,在宾夕法尼亚大学的原子力显微镜中进行纳米尺度的粘附和摩擦实验。为了在不同类型的实验之间建立联系,并隔离状态演化效应的不同来源,我们将在所有三组实验中改变相同的环境条件。这些测试包括湿度、pH值(液体中)和温度的函数。在宏观岩石摩擦实验中,这三个环境因素都被证明会影响演化效应。纳米压痕和原子力显微镜测量应该使我们能够确定粗糙尺度上的宏观行为负责的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terry Tullis其他文献
QuakeSim and the Solid Earth Research Virtual Observatory
QuakeSim 和固体地球研究虚拟天文台
- DOI:
10.1007/978-3-7643-8131-8_2 - 发表时间:
2006 - 期刊:
- 影响因子:2
- 作者:
A. Donnellan;John Rundle;Geoffrey C. Fox;Dennis McLeod;Lisa Grant;Terry Tullis;M. Pierce;Jay Parker;G. Lyzenga;R. Granat;M. Glasscoe - 通讯作者:
M. Glasscoe
Terry Tullis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terry Tullis', 18)}}的其他基金
Collaborative Research: What Processes Cause State Evolution in Rate and State Friction?
合作研究:什么过程导致速率和状态摩擦的状态演化?
- 批准号:
2024660 - 财政年份:2020
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Development of an Instrument to Allow Rotary-Shear Friction Experiments at High-Pressure and Seismic Slip Rates
开发一种能够在高压和地震滑移率下进行旋转剪切摩擦实验的仪器
- 批准号:
1359596 - 财政年份:2014
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Workshop on Advancing Experimental Rock Deformation Research: Scientific and Technical Needs
推进岩石变形实验研究研讨会:科学和技术需求
- 批准号:
1238052 - 财政年份:2012
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
CMG Collaborative Research: Fast Multipole Algorithms for Geophysical Stress Modeling and Their Use in Large-Scale Simulation of Earthquake Occurrence
CMG 协作研究:地球物理应力建模的快速多极算法及其在地震发生大规模模拟中的应用
- 批准号:
0934711 - 财政年份:2009
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: Laboratory Investigations of the Origin of Fault-Zone Pulverized Rock
合作研究:断层带粉岩成因的实验室研究
- 批准号:
0711047 - 财政年份:2007
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Laboratory Experiments on Rock Friction Focused on Understanding Earthquake Mechanics
岩石摩擦实验室实验侧重于了解地震力学
- 批准号:
0408977 - 财政年份:2004
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Experimental Study of the Role of Pore Fluid Pressure in Earthquake Nucleation
孔隙流体压力在地震成核中作用的实验研究
- 批准号:
0230170 - 财政年份:2003
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Laboratory Experiments on Rock Friction Focused on Understanding Earthquake Mechanics
岩石摩擦实验室实验侧重于了解地震力学
- 批准号:
0003543 - 财政年份:2001
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Laboratory Experiments on Rock Friction Focused on Understanding Earthquake Mechanics
岩石摩擦实验室实验侧重于了解地震力学
- 批准号:
9814660 - 财政年份:1999
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Understanding Processes of Rock Friction Relevant to Earthquake Mechanics
了解与地震力学相关的岩石摩擦过程
- 批准号:
9725562 - 财政年份:1998
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Collaborative Research: RAPID: Fault rock and spring sampling of the 2023 Kahramanmaras, Turkey, earthquake sequence ruptures
合作研究:RAPID:2023 年土耳其卡赫拉曼马拉斯地震序列破裂的断层岩和泉水采样
- 批准号:
2335077 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Fault rock and spring sampling of the 2023 Kahramanmaras, Turkey, earthquake sequence ruptures
合作研究:RAPID:2023 年土耳其卡赫拉曼马拉斯地震序列破裂的断层岩和泉水采样
- 批准号:
2335078 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Block System Response to Hydraulic Loads in Rock Scour
合作研究:多块系统对岩石冲刷水力载荷的响应
- 批准号:
2342788 - 财政年份:2023
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research/RUI: Multi-Block System Response to Hydraulic Loads in Rock Scour
协作研究/RUI:多块系统对岩石冲刷中水力载荷的响应
- 批准号:
2218523 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Research Opportunities in Rock Deformation
REU 网站:合作研究:岩石变形的研究机会
- 批准号:
2050705 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
REU Site: Collaborative Research: Research Opportunities in Rock Deformation
REU 网站:合作研究:岩石变形的研究机会
- 批准号:
2050372 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Block System Response to Hydraulic Loads in Rock Scour
合作研究:多块系统对岩石冲刷水力载荷的响应
- 批准号:
2218551 - 财政年份:2022
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant