Development of a Statistical Physics Approach to Multi-Scale Complexity in Earthquake Rupture Dynamics
地震破裂动力学多尺度复杂性统计物理方法的发展
基本信息
- 批准号:0810309
- 负责人:
- 金额:$ 17.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most fundamental features of Earthquake ruptures is that they exhibit spatial-temporal complexity. Yet understanding the evolution and implications of the chaotic dynamics in systems with spontaneous rupture is far from being complete. Since the full multi-scale numerical simulation of 3-D media is numerically intractable with current computational capabilities, the goal of this project is to investigate the possibility of constructing ?reduced models? that retain the essential physics of this complex dynamical system. The reduced models will be used to generate approximate, numerically efficient solutions that predict fault slip caused by spontaneous dynamic frictional sliding events in the presence of heterogeneous pre-stress (earthquakes). The researchers will investigate both deterministic and stochastic model reduction techniques. The reduction philosophy hinges on the selection of a group of variables called ?coarse variables? that average (in an appropriate sense) the fine scale dynamics and capture the macroscopic features of the studied dynamical system. Slip can then be calculated as a function of these coarse variables without resorting to detailed simulations. A diverse set of simulation tools will be used, combining methods from statistical mechanics, nonlinear dynamical systems, stochastic modeling and geophysics. Particular attention will be given to techniques being developed in the DARPA-Dynarum program that involves, as a key ingredient, the Markov learning methods, whereby the coarse variable learn their dynamics from fine scales simulations. The project will support a collaboration between geophysicists and mathematicians, and will fund a graduate student to work on this multi-disciplinary project. Understanding earthquake occurrence using the models these investigators will explore may help improve our knowledge of earthquake hazard.
地震破裂的一个最基本的特征是它具有时空复杂性。然而,理解自发破裂系统中混沌动力学的演化和含义还远未完成。由于完整的多尺度数值模拟的3-D介质是数值棘手的与目前的计算能力,本项目的目标是调查的可能性,构建?缩小模型?保留了这个复杂动力系统的基本物理特性。减少模型将被用来产生近似的,数值上有效的解决方案,预测断层滑动引起的自发动态摩擦滑动事件中存在的非均匀预应力(地震)。 研究人员将研究确定性和随机模型简化技术。减少哲学取决于一组变量的选择称为?粗糙变量?这平均(在适当的意义上)的精细尺度动力学和捕获所研究的动力系统的宏观特征。然后,可以计算滑移作为这些粗略变量的函数,而无需进行详细的模拟。 将使用一套不同的模拟工具,结合统计力学,非线性动力系统,随机建模和物理学的方法。将特别注意DARPA-Dynarum计划中正在开发的技术,该计划涉及马尔可夫学习方法,作为一个关键因素,粗变量从细尺度模拟中学习其动态。该项目将支持数学家和数学家之间的合作,并将资助一名研究生从事这一多学科项目。使用这些研究人员将探索的模型来理解地震的发生可能有助于提高我们对地震危害的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Heaton其他文献
Thomas Heaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Heaton', 18)}}的其他基金
I-Corps: Real-time Monitoring of Civil Structures Using Video Cameras
I-Corps:使用摄像机实时监控土木结构
- 批准号:
1833341 - 财政年份:2018
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Planning Grant: I/UCRC for Geoscience
规划补助金:I/UCRC 地球科学
- 批准号:
1362155 - 财政年份:2014
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II: From Data to Knowledge: The Quake-Catcher Network
合作研究:CDI-Type II:从数据到知识:Quake-Catcher 网络
- 批准号:
1027790 - 财政年份:2010
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Simulating the Response of High-Rise Buildings to Great and Giant Subduction Earthquakes
模拟高层建筑对巨大俯冲地震的响应
- 批准号:
0610100 - 财政年份:2006
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Radiation of Teleseismic Body Waves from Dynamic Faults
动力断层远震体波的辐射
- 批准号:
0208494 - 财政年份:2002
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
相似海外基金
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
- 批准号:
MR/W007320/2 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Fellowship
Travel: New Statistical Physics of Living Matter: non-equilibrium states under adaptive control
旅行:生命物质的新统计物理学:自适应控制下的非平衡态
- 批准号:
2326439 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Statistical analysis of Japanese texts with application of analysis technique used in high energy physics
应用高能物理分析技术对日语文本进行统计分析
- 批准号:
23K17512 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Statistical physics and network-based approaches for elucidating molecular biomarkers of COPD
阐明 COPD 分子生物标志物的统计物理学和基于网络的方法
- 批准号:
10559835 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Researches on axonal transport by motor proteins based on force measurements by using nano-spring and non-equilibrium statistical physics
基于纳米弹簧和非平衡统计物理力测量的运动蛋白轴突运输研究
- 批准号:
23H02442 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Physics Investigation of Artificial Neural Networks
人工神经网络的统计物理研究
- 批准号:
574283-2022 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
University Undergraduate Student Research Awards
Statistical Physics of Design: Materials to Macroscale
设计的统计物理:材料到宏观尺度
- 批准号:
RGPIN-2019-05655 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
Discovery Grants Program - Individual
Statistical physics of confined and self-assembling wormlike polymers
受限和自组装蠕虫状聚合物的统计物理
- 批准号:
RGPIN-2020-03978 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
Discovery Grants Program - Individual
SHINE: Physics-based and Statistical Studies Connecting Surface-field Distributions to the Magnetic Flux Rope Structure in the Corona and Heliosphere
SHINE:基于物理和统计的研究将表面场分布与日冕和日光层的磁通绳结构联系起来
- 批准号:
2228967 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant