Mathematical and Numerical Study of Electromagnetic Waves Interacting with Metamaterials

电磁波与超材料相互作用的数学和数值研究

基本信息

  • 批准号:
    0810896
  • 负责人:
  • 金额:
    $ 12.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the mathematical analysis and design of robust and efficient computational algorithms for modeling wave interactions with negative index metamaterials (NIMs). These negative index metamaterials have some exotic properties (such as near fieldrefocusing) never seen before in those natural electromagnetic materials.The numerical NIM analysis plays an important role for the design of the nano-structures with complicated geometries that establish a NIM.these NIM models are far more complicated than the well-studied Maxwell's equations in free space due to its dispersiveness, and the introduced electric and magnetic polarization currents.Solving them accurately and efficiently is quite challenging and very few work has been done in regards of solid mathematical analysis and modeling. The ultimate goal of this project is to develop an efficient set of time domain finite element methods that are mathematically sound, accurate and fast convergent for simulating wave interactions with metamaterials.Study of metamaterials is one of the hottest topics in many disciplinaries since 2000, with potential revolution in design of antenna, waveguides and radar, nanolithography and imaging at subwavelength resolution (used for better understanding of the images obtained from noninvasive geophysical probing and tumor detection), near field control and manipulation (used for detecting low levels of chemical and biological agents, manipulation of molecules), and invisibility cloak (used for stealth technology). Developing robust and efficient algorithms for negative index metamaterials will benefit broader areas such as electrical engineering, materials, optics, physics, nano-technology, and biomedical technology. Furthermore, the proposed project will help the PI recruit and train graduate students (this project will support a female Ph.D student currently supervised by the PI) to pursue careers in computational mathematics.
本计画主要研究波与负折射率超材料相互作用之数学分析与设计。这些负折射率的超材料具有一些奇异的特性数值NIM分析对于设计具有复杂几何形状的纳米结构,建立NIM具有重要意义。由于NIM模型的色散性,它远比自由空间的麦克斯韦方程复杂,以及引入的电和磁极化电流。精确有效地求解它们是相当具有挑战性的,在坚实的数学分析和建模方面做的工作很少。本项目的最终目标是发展一套有效的时域有限元方法,用于模拟波与异向介质的相互作用。异向介质的研究是自2000年以来众多学科的热门课题之一,它将给天线、波导和雷达的设计带来潜在的革命,亚波长分辨率的纳米光刻和成像(用于更好地理解从非侵入性地球物理探测和肿瘤检测获得的图像)、近场控制和操作(用于探测低水平的化学和生物制剂,操纵分子)和隐形斗篷(用于隐形技术)。为负折射率超材料开发强大而有效的算法将使电气工程、材料、光学、物理、纳米技术和生物医学技术等更广泛的领域受益。此外,拟议的项目将帮助PI招募和培训研究生(该项目将支持目前由PI监督的一名女博士生),以追求计算数学的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jichun Li其他文献

Correlation between steroid hormonal levels and cardiac function in women during controlled ovarian hyperstimulation
受控卵巢过度刺激期间女性类固醇激素水平与心脏功能之间的相关性
  • DOI:
    10.1007/s12020-013-9953-7
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yi;Xiuhua Sun;Lili Zang;Quan Zhang;Jichun Li;Shuhua Zou
  • 通讯作者:
    Shuhua Zou
Mathematical justification for RBF-MFS
A radial basis meshless method for solving inverse boundary value problems
JROTM: Jointly reinforced object tracking with temporal content reference and motion guidance
  • DOI:
    https://doi.org/10.1016/j.neucom.2020.12.111
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Jichun Li;Bo Yan;Chuming Lin;Weimin Tan
  • 通讯作者:
    Weimin Tan
Simulating backward wave propagation in metamaterial with radial basis functions
使用径向基函数模拟超材料中的反向波传播
  • DOI:
    10.1016/j.rinam.2019.100009
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jichun Li;Bing Nan
  • 通讯作者:
    Bing Nan

Jichun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jichun Li', 18)}}的其他基金

Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
  • 批准号:
    2011943
  • 财政年份:
    2020
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Standard Grant
Conference on Computational Mathematics and Applications (CCAM)
计算数学及应用会议(CCAM)
  • 批准号:
    1907169
  • 财政年份:
    2019
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Standard Grant
Mathematical study and finite element simulation of wave propagation in metamaterials
超材料中波传播的数学研究和有限元模拟
  • 批准号:
    1416742
  • 财政年份:
    2014
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Continuing Grant
The 8th International Conference on Scientific Computing and Applications
第八届科学计算与应用国际会议
  • 批准号:
    1139712
  • 财政年份:
    2011
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Mathematical and Numerical Treatment of Fluid Flow and Transport in Porous Media" - "May 23-27, 2006"
NSF/CBMS 数学科学区域会议 - “多孔介质中流体流动和传输的数学和数值处理” - “2006 年 5 月 23-27 日”
  • 批准号:
    0532039
  • 财政年份:
    2006
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Standard Grant
U.S.-Hong Kong Cooperative Research: Radial Basis Function Based Meshless Methods with Applications to Groundwater Contaminant Modeling
美国-香港合作研究:基于径向基函数的无网格方法及其在地下水污染物建模中的应用
  • 批准号:
    0328186
  • 财政年份:
    2003
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Standard Grant

相似海外基金

Study on Higher Order Numerical Methods and Dynamical Behavior of Solutions for Mathematical Models
数学模型解的高阶数值方法和动力学行为研究
  • 批准号:
    19K03613
  • 财政年份:
    2019
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the numerical verification method of solutions with high accuracy for the nonlinear mathematical models in infinite dimension
无限维非线性数学模型高精度解的数值验证方法研究
  • 批准号:
    15K05012
  • 财政年份:
    2015
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study Research of mathematical analysis and numerical analytical a non-linear continuum with density gradient-dependent stress
密度梯度相关应力非线性连续体的数学分析和数值解析研究
  • 批准号:
    25870005
  • 财政年份:
    2013
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A mathematical and numerical study of microscale breaking waves
微尺度破碎波的数学和数值研究
  • 批准号:
    392141-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A mathematical and numerical study of microscale breaking waves
微尺度破碎波的数学和数值研究
  • 批准号:
    392141-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A mathematical and numerical study of microscale breaking waves
微尺度破碎波的数学和数值研究
  • 批准号:
    392141-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A study on reliability analysis for numerical mathematical models of wrinkled membranes
褶皱膜数值数学模型可靠性分析研究
  • 批准号:
    21760654
  • 财政年份:
    2009
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Microstructural Evolution in Sintering - Experimental, Mathematical and Numerical Study
烧结过程中的微观结构演变 - 实验、数学和数值研究
  • 批准号:
    9996087
  • 财政年份:
    1998
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Continuing Grant
Microstructural Evolution in Sintering - Experimental, Mathematical and Numerical Study
烧结过程中的微观结构演变 - 实验、数学和数值研究
  • 批准号:
    9705849
  • 财政年份:
    1997
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analytic and Numerical Methods for the Study of Long Term Behavior
数学科学:研究长期行为的分析和数值方法
  • 批准号:
    9500869
  • 财政年份:
    1995
  • 资助金额:
    $ 12.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了