Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media

复杂介质中电磁波传播的鲁棒高效数值方法

基本信息

  • 批准号:
    2011943
  • 负责人:
  • 金额:
    $ 25.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project will develop novel mathematical modeling and robust computational methods for simulating wave propagation in complex media such as metamaterials and graphene. This interdisciplinary research has direct applications in nanotechnology and materials through the advancement of discovery and understanding of new phenomena in nanooptics and stealth technology brought by metamaterials and graphene. Graphene can be used to generate picosecond laser pulses because of its wide absorption range, fast decay, and high stability properties. Graphene can be used in sensors to concurrently sense mass, gas, tension, diseases, and explosives; graphene can be used in low-cost display screens of mobile devices, lithium-ion batteries with fast recharge capacity, hydrogen storage for fuel cell-powered cars, and low-cost fuel cells and water desalination, etc. All of these applications benefit from accurate and efficient numerical algorithms for solving the associated mathematical models by reducing the cost of physical experiments. This project will provide support for one PhD student per year. The focus of this project is to develop and analyze robust and efficient finite element methods for solving electromagnetic wave propagation problems in complex media. Theoretical analysis and practical algorithms will be developed with the following objectives: (1) Further explore some perfectly matched layer (PML) models recently developed for metamaterials, develop and analyze time-domain finite element methods using both edge elements and discontinuous Galerkin methods for solving them; (2) Explore graphene models and efficient FEM algorithms to simulate wave propagation in graphene; (3) Develop robust and efficient a posteriori error estimators for time-dependent Maxwell’s equations in metamaterial and graphene, explore possible superconvergence points for high-order triangular and tetrahedral edge elements; (4) Develop, and analyze efficient numerical methods for Maxwell's equations with random inputs with applications for random metamaterials. The developed algorithms and codes in the project will lead to a better understanding of metamaterials and graphene, and their physical effects, so that researchers can design and use them in applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发新的数学建模和强大的计算方法,用于模拟波在超材料和石墨烯等复杂介质中的传播。这种跨学科的研究通过发现和理解超材料和石墨烯带来的纳米光学和隐形技术中的新现象的进步,在纳米技术和材料中有直接的应用。石墨烯可以用来产生皮秒激光脉冲,因为它的吸收范围宽,衰减快,稳定性高。石墨烯可用于传感器,同时感测质量、气体、张力、疾病和爆炸物;石墨烯可用于移动的设备的低成本显示屏、具有快速再充电能力的锂离子电池、用于燃料电池驱动的汽车的氢存储,以及低成本燃料电池和水脱盐,所有这些应用都受益于用于通过减少物理计算的成本来求解相关联的数学模型的精确且有效的数值算法。实验该项目每年将为一名博士生提供支持。 该项目的重点是开发和分析用于解决复杂介质中电磁波传播问题的强大而有效的有限元方法。本研究的主要目标是:(1)深入研究目前发展起来的超材料完全匹配层(PML)模型,发展和分析边缘元和间断Galerkin方法求解PML模型的时域有限元方法;(2)探索石墨烯模型和有效的有限元算法,模拟波在石墨烯中的传播;(3)为超材料和石墨烯中的时间相关麦克斯韦方程组开发鲁棒和有效的后验误差估计器,探索高阶三角形和四面体边缘单元的可能超收敛点;(4)开发和分析具有随机输入的麦克斯韦方程组的有效数值方法,并应用于随机超材料。该项目中开发的算法和代码将使人们更好地理解超材料和石墨烯及其物理效应,以便研究人员能够设计并在应用中使用它们。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis and FDTD Simulation of a Perfectly Matched Layer for the Drude Metamaterial
Drude 超材料完美匹配层的分析和 FDTD 仿真
  • DOI:
    10.4208/aam.oa-2022-0002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    null, Jichun Li;Zhu, Li
  • 通讯作者:
    Zhu, Li
Development and analysis of a new finite element method for the Cohen–Monk PML model
  • DOI:
    10.1007/s00211-020-01166-4
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Meng Chen;Yunqing Huang;Jichun Li
  • 通讯作者:
    Meng Chen;Yunqing Huang;Jichun Li
Local discontinuous Galerkin methods for the carpet cloak model
A new time-domain finite element method for simulating surface plasmon polaritons on graphene sheets
  • DOI:
    10.1016/j.camwa.2023.05.003
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jichun Li;Li Zhu;T. Arbogast
  • 通讯作者:
    Jichun Li;Li Zhu;T. Arbogast
Two new finite element schemes and their analysis for modeling of wave propagation in graphene
  • DOI:
    10.1016/j.rinam.2020.100136
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jichun Li
  • 通讯作者:
    Jichun Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jichun Li其他文献

Correlation between steroid hormonal levels and cardiac function in women during controlled ovarian hyperstimulation
受控卵巢过度刺激期间女性类固醇激素水平与心脏功能之间的相关性
  • DOI:
    10.1007/s12020-013-9953-7
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yi;Xiuhua Sun;Lili Zang;Quan Zhang;Jichun Li;Shuhua Zou
  • 通讯作者:
    Shuhua Zou
Mathematical justification for RBF-MFS
A radial basis meshless method for solving inverse boundary value problems
JROTM: Jointly reinforced object tracking with temporal content reference and motion guidance
  • DOI:
    https://doi.org/10.1016/j.neucom.2020.12.111
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Jichun Li;Bo Yan;Chuming Lin;Weimin Tan
  • 通讯作者:
    Weimin Tan
Simulating backward wave propagation in metamaterial with radial basis functions
使用径向基函数模拟超材料中的反向波传播
  • DOI:
    10.1016/j.rinam.2019.100009
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jichun Li;Bing Nan
  • 通讯作者:
    Bing Nan

Jichun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jichun Li', 18)}}的其他基金

Conference on Computational Mathematics and Applications (CCAM)
计算数学及应用会议(CCAM)
  • 批准号:
    1907169
  • 财政年份:
    2019
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Mathematical study and finite element simulation of wave propagation in metamaterials
超材料中波传播的数学研究和有限元模拟
  • 批准号:
    1416742
  • 财政年份:
    2014
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
The 8th International Conference on Scientific Computing and Applications
第八届科学计算与应用国际会议
  • 批准号:
    1139712
  • 财政年份:
    2011
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Mathematical and Numerical Study of Electromagnetic Waves Interacting with Metamaterials
电磁波与超材料相互作用的数学和数值研究
  • 批准号:
    0810896
  • 财政年份:
    2008
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Mathematical and Numerical Treatment of Fluid Flow and Transport in Porous Media" - "May 23-27, 2006"
NSF/CBMS 数学科学区域会议 - “多孔介质中流体流动和传输的数学和数值处理” - “2006 年 5 月 23-27 日”
  • 批准号:
    0532039
  • 财政年份:
    2006
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
U.S.-Hong Kong Cooperative Research: Radial Basis Function Based Meshless Methods with Applications to Groundwater Contaminant Modeling
美国-香港合作研究:基于径向基函数的无网格方法及其在地下水污染物建模中的应用
  • 批准号:
    0328186
  • 财政年份:
    2003
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant

相似海外基金

Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
  • 批准号:
    20K14356
  • 财政年份:
    2020
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Robust machine learning: algorithms, numerical analysis and efficient software
强大的机器学习:算法、数值分析和高效软件
  • 批准号:
    2278824
  • 财政年份:
    2019
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Studentship
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
  • 批准号:
    9161-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Development of robust and efficient algorithms in numerical linear algebra
开发稳健且高效的数值线性代数算法
  • 批准号:
    23700023
  • 财政年份:
    2011
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
  • 批准号:
    9161-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
  • 批准号:
    9161-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
  • 批准号:
    9161-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust algorithms for hard, large scale, numerical optimization
用于硬大规模数值优化的高效且稳健的算法
  • 批准号:
    9161-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了