Collaborative Research: Algebraic Multigrid Methods: Multilevel Theory and Practice
合作研究:代数多重网格方法:多层次理论与实践
基本信息
- 批准号:0811022
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of this collaborative proposal is to developtheoretically based algebraic multigrid (AMG) solvers for Hermitian(and, where possible, non-Hermitian) positive-definite problems. Theteam aims to improve understanding of the performance of the family ofAMG algorithms and, with this improved knowledge, to develop AMGmethods that offer provable, computable, a priori information on thealgorithm's performance. The project team represents a closecollaboration of experts in this area, each of whom has madecontributions in the field. Over the past several years, the team hasbegun to work collectively on developing new multilevel solvers andrigorous theoretical results for the convergence and complexityanalysis thereof. Together, the team will have the capability to takea step toward answering some of the fundamental research questionsassociated with these two essential aspects of the analysis and designof efficient algorithms.We expect the work proposed here to: (1) directly impact computationalsimulation codes currently employing multi-level solvers, by providingfaster and more reliable computational tools for the numericalcomputations at the core of physical simulations; and (2) allow forsimulation of phenomena for which suitable solvers are currentlyunavailable. The results from the proposed research will, thus, havea direct impact on scientific and engineering problems, includingthose from energy, through both the simulation of particle physics andprocessing of data from oil reservoir models, biophysics, in surgicalsimulation, and the environment, in climate prediction and contaminantremediation models. The algorithms to be investigated here arealready in use in many of these fields, but are often considered to be"expert-only" tools. The goal of this proposal is to develop morereliable and robust versions of these tools. The proposed researchwill have a strong educational impact as well, as it provides for asolid base for training of graduate students in the modern theoreticaland practical aspects of numerical methods for modeling ofapplications arising in science and engineering.
这一合作建议的主要目标是为厄米特(以及可能的非厄米特)正定问题开发基于理论的代数多网格(AMG)求解器。该团队的目标是提高对amg算法家族性能的理解,并利用这些改进的知识,开发amg方法,提供关于算法性能的可证明、可计算、先验信息。项目小组代表了该领域专家的密切合作,他们每个人都在该领域作出了贡献。在过去的几年中,该团队开始共同致力于开发新的多层求解器,并为其收敛性和复杂性分析提供严格的理论结果。总之,该团队将有能力采取步骤,以回答一些基本研究问题,这些问题与分析和设计有效算法的这两个基本方面有关。我们希望这里提出的工作:(1)通过为物理模拟的核心数值计算提供更快、更可靠的计算工具,直接影响目前使用多级求解器的计算模拟代码;(2)允许对目前没有合适求解器的现象进行模拟。因此,拟议研究的结果将对科学和工程问题产生直接影响,包括来自能源的问题,通过粒子物理学的模拟和来自油藏模型的数据处理,生物物理学,外科模拟,以及环境,气候预测和污染修复模型。这里要研究的算法已经在许多这些领域中使用,但通常被认为是“仅限专家”的工具。本建议的目标是开发这些工具的更可靠和健壮的版本。建议的研究也将具有强大的教育影响,因为它为培养研究生在科学和工程应用中数值方法建模的现代理论和实践方面提供了坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott MacLachlan其他文献
Scott MacLachlan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott MacLachlan', 18)}}的其他基金
Fast Multigrid Solvers for Transport with Forward-Peaked Scattering
用于具有前向峰值散射传输的快速多重网格求解器
- 批准号:
1015370 - 财政年份:2010
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329855 - 财政年份:2023
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2229915 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151946 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152088 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152311 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic Framework of Compositional Functions for New Structure, Training, and Explainability of Deep Learning
合作研究:深度学习新结构、训练和可解释性的组合函数代数框架
- 批准号:
2134235 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant