FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
基本信息
- 批准号:2152088
- 负责人:
- 金额:$ 34.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to apply major new developments in mathematics to open questions in algebra and algebraic geometry. Algebra is the study of generalized systems of numbers, while algebraic geometry is concerned with the geometry of solutions of polynomial equations. Both fields are used throughout mathematics and touch regularly on daily life via algorithms used in computer vision (for instance in cell phone cameras), satellite communications (error-correcting codes), and secure messaging (cryptography using elliptic curves). The project also uses higher category theory developed over the last two decades, which makes it possible to systematically deal with subtle, loosely defined objects. This extra flexibility leads to new control over the basic objects used in algebraic geometry. Even more recently, some work on condensed mathematics raises the possibility of extending this new control to closely related areas of analysis. This project will use this cutting-edge work to attempt to settle longstanding questions in algebraic geometry and to introduce and solve new questions in analytical algebraic geometry. It will provide research and training opportunities for graduate students and postdoctoral researchers and will support several workshops aimed at early-career mathematicians.There are four main research challenges addressed by this project. First, the PIs aim to find complete noncommutative categorical invariants and to find a bridge directly from the topological invariants to the categorical ones. No known noncommutative categorical invariant suffices to reconstruct an algebraic variety. In good cases, work of the PIs and collaborators shows that the underlying space is enough for such a reconstruction. Next, to clarify the role of commutative objects inside noncommutative objects, the PIs will study the deformations and local systems of dg categories in an attempt to settle Orlov's geometricity conjecture. Third, the PIs will study the p-adic cohomology of algebraic varieties via higher categorical invariants such as topological Hochschild homology, applied to the derived category. Finally, the PIs will try to show that the recently constructed theory of nuclear modules yields the correct noncommutative invariants of a rigid analytic variety and will aim to generalize the first three projects to the more general analytic context.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目的是将数学中的主要新发展应用于代数和代数几何中的开放问题。代数研究的是广义数字系统,而代数几何研究的是多项式方程的解的几何。这两个领域都在整个数学中使用,并通过计算机视觉(例如在手机相机中使用)、卫星通信(纠错码)和安全消息传递(使用椭圆曲线的密码术)中使用的算法定期涉及日常生活。该项目还使用了过去20年发展起来的更高范畴理论,这使得系统地处理微妙的、定义松散的物体成为可能。这种额外的灵活性导致了对代数几何中使用的基本对象的新控制。最近,一些关于凝聚数学的工作提出了将这种新的控制扩展到密切相关的分析领域的可能性。这个项目将利用这一前沿工作来尝试解决代数几何中的长期问题,并引入和解决解析代数几何中的新问题。它将为研究生和博士后研究人员提供研究和培训机会,并将支持几个针对职业生涯早期数学家的研讨会。该项目解决了四个主要的研究挑战。首先,PI的目标是找到完全的非交换范畴不变量,并找到从拓扑不变量到范畴不变量的直接桥梁。没有已知的非交换范畴不变量足以重建一个代数簇。在好的情况下,私人投资机构和合作者的工作表明,底层空间足以进行这种重建。接下来,为了阐明交换对象在非交换对象中的作用,PI将研究dg范畴的变形和局部系统,试图解决Orlov的几何猜想。第三,PI将通过更高的范畴不变量,如应用于派生范畴的拓扑Hochschild同调,来研究代数簇的p-进上同调。最后,PI将试图证明最近构建的核模块理论产生了严格分析种类的正确非交换不变量,并将致力于将前三个项目推广到更一般的分析上下文。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Caldararu其他文献
Andrei Caldararu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Caldararu', 18)}}的其他基金
Categorical Invariants in Non-commutative Geometry
非交换几何中的分类不变量
- 批准号:
2202365 - 财政年份:2022
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
Higher genus categorical Gromov-Witten invariants
高属分类 Gromov-Witten 不变量
- 批准号:
1811925 - 财政年份:2018
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
- 批准号:
1502553 - 财政年份:2015
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
Applications of derived algebraic geometry to problems in Hodge and Lie theory
派生代数几何在霍奇和李理论问题中的应用
- 批准号:
1200721 - 财政年份:2012
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
Generalized A-infinity algebras, stability structures, and Hochschild homology
广义 A-无穷代数、稳定性结构和 Hochschild 同调
- 批准号:
0901224 - 财政年份:2009
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
Hochschild theory in algebraic geometry
代数几何中的霍克希尔德理论
- 批准号:
0556042 - 财政年份:2006
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Continuing Grant