Galerkin Lattice Boltzmann Methods for Direct Simulation of Liquid Slip on Superhydrophobic Surfaces
用于直接模拟超疏水表面液体滑移的伽辽金格子玻尔兹曼方法
基本信息
- 批准号:0811046
- 负责人:
- 金额:$ 18.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research is to develop an unstructured lattice Boltzmann method (LBM) based on the Galerkin formulation (GLBM) for the direct simulation of liquid slip on superhydrophobic surfaces and identify important design factors that maximize the effective slip under practical conditions. The large effective slip on superhydrophobic surfaces is expected due to the sizable difference in viscosity between liquid and gas that is trapped in the nanostructures. A successful numerical model should be able to deal with complex shape of superhydrophobic surfaces and large viscosity difference between fluids. The proposed two-phase GLBM on the unstructured mesh will overcome several undesirable properties inherent to the LBM on the structured mesh as a modeling tool for superhydrophobic surfaces; namely, instability at large density/viscosity difference and geometrical restriction imposed by the mesh. It will enable investigation of detailed flow physics on superhydrophobic surfaces covered with complex nanostructures. The proposed research is to: (1) Develop GLBM for immiscible two phase flows having a large density and viscosity ratio, using implicit time marching on unstructured mesh; (2) Establish appropriate boundary conditions at the liquid-solid-gas boundary based on the minimization of the free energy and incorporate them into GLBM framework; (3) Examine the physics of continuous and dispersed (droplets) liquid flows on superhydrophobic surfaces with complex nanostructures; and (4) Find the optimum profile and distribution of nanostructures for the maximum superhydrophobicity and effective slip.Superhydrophobic surfaces are of great interest in many industrial and biological applications, because properties such as anti-sticking, anti-contamination, and self-cleaning are expected. When a droplet rolls over a contamination, it collects the particles from the surface and the contaminant particles are removed from the surface. In microfluidic and biomedical applications, superhydrophobic surfaces reduce the hydrodynamic drag at the wall, and prevent cross-contamination of one drop by another one moving on the same surface. The proposed research explores a new modeling capability that could significantly change existing approaches to designing microfluidic devices and help prescreen design alternatives reducing the design cost. The research experience acquired from the proposed project will also enhance the course materials for the advanced computational fluid dynamics courses.
本研究的目的是发展一种基于Galerkin公式的非结构格子Boltzmann方法(LBM),用于直接模拟超疏水表面上的液体滑移,并确定在实际条件下最大有效滑移的重要设计因素。由于捕获在纳米结构中的液体和气体之间的粘度差异很大,预计超疏水表面上会有很大的有效滑移。一个成功的数值模型应该能够处理超疏水表面的复杂形状和流体之间较大的粘度差。非结构网格上的两相GLBM将克服结构网格上的两相GLBM作为超疏水表面建模工具所固有的一些不良特性,即在大密度/粘度差下的不稳定性和网格施加的几何限制。这将使在复盖着复杂纳米结构的超疏水表面上进行详细的流动物理研究成为可能。本文的研究内容是:(1)在非结构网格上采用隐式时间推进法,发展适用于大密度、大粘度不混溶两相流动的GLBM;(2)基于自由能最小化原则,在液-固-气边界上建立适当的边界条件,并将其纳入GLBM框架;(3)研究具有复杂纳米结构的超疏水表面上连续和分散(液滴)流动的物理特性;超疏水表面由于具有防粘、防污染、自清洁等性能,在许多工业和生物领域具有广泛的应用前景。当液滴在污染物上滚动时,它从表面收集颗粒,并从表面去除污染物颗粒。在微流体和生物医学应用中,超疏水表面减少了壁面的流体动力阻力,并防止了一滴在同一表面上移动的另一滴的交叉污染。这项拟议的研究探索了一种新的建模能力,可以显着改变现有的微流控器件设计方法,并帮助预先筛选设计备选方案,降低设计成本。从拟议项目中获得的研究经验也将增强高级计算流体力学课程的课程材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taehun Lee其他文献
Gauss curvature flow with an obstacle
- DOI:
10.1007/s00526-021-02029-y - 发表时间:
2021-07-24 - 期刊:
- 影响因子:2.000
- 作者:
Ki-Ahm Lee;Taehun Lee - 通讯作者:
Taehun Lee
Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices
AlGaN/GaN 高电子迁移率晶体管器件的物理缺陷与性能之间的相关性
- DOI:
10.4313/teem.2010.11.2.049 - 发表时间:
2010 - 期刊:
- 影响因子:1.9
- 作者:
Seong;Taehun Lee;Moon J. Kim - 通讯作者:
Moon J. Kim
Alternative Multiple Imputation Inference for Mean and Covariance Structure Modeling
用于均值和协方差结构建模的替代多重插补推理
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Taehun Lee;Li Cai - 通讯作者:
Li Cai
Prevention of Venous Thromboembolism in Hip Surgery Patients
髋关节手术患者静脉血栓栓塞的预防
- DOI:
10.5371/hp.2014.26.1.1 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Youn Soo Park;Seung;Taehun Lee - 通讯作者:
Taehun Lee
An em algorithm for maximum likelihood estimation of process factor analysis models
过程因素分析模型最大似然估计的em算法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
R. Maccallum;Taehun Lee - 通讯作者:
Taehun Lee
Taehun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taehun Lee', 18)}}的其他基金
Collaborative Research: A Collaborative Proposal for Supporting US Participation in ICMMES-2014 (New York City, USA, July 14 - 18, 2014)
合作研究:支持美国参与 ICMMES-2014 的合作提案(美国纽约,2014 年 7 月 14 日至 18 日)
- 批准号:
1437625 - 财政年份:2014
- 资助金额:
$ 18.12万 - 项目类别:
Standard Grant
相似国自然基金
Lattice结构IIR数字滤波器设计的序贯部分优化算法
- 批准号:62001261
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
皮米级发射度的衍射极限储存环lattice结构及动力学研究
- 批准号:11875259
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
基于结构化Lattice编码的CSMA(载波侦听多址接入)多包传输技术研究
- 批准号:61571373
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice Boltzmann方法的相间传质过程界面对流模拟和实验研究
- 批准号:21176171
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice的汉语语音主题分类方法研究
- 批准号:60702053
- 批准年份:2007
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Lattice滤波器的故障诊断方法研究
- 批准号:69574015
- 批准年份:1995
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
Turbulent noise reduction using adjoint lattice Boltzmann method
使用伴随格子玻尔兹曼方法降低湍流噪声
- 批准号:
22K03929 - 财政年份:2022
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiphase Multicomponent Lattice Boltzmann Method for Modelling Wetting on Liquid Infused Surfaces
用于模拟液体注入表面润湿的多相多组分格子玻尔兹曼方法
- 批准号:
EP/V034154/1 - 财政年份:2021
- 资助金额:
$ 18.12万 - 项目类别:
Fellowship
PIV observations and the lattice Boltzmann simulations of turbulent transport in a plant canopy under stably-stratified atmospheric conditions
稳定分层大气条件下植物冠层湍流传输的 PIV 观测和晶格玻尔兹曼模拟
- 批准号:
20K04057 - 财政年份:2020
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adjoint sensitivity analysis based on lattice Boltzmann method for flow-induced sound problems
基于格子玻尔兹曼法的流致声问题伴随灵敏度分析
- 批准号:
20K22397 - 财政年份:2020
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Multiple-Component, Thermal Lattice Boltzmann Model for the Fuel Cell
燃料电池的多组分热晶格玻尔兹曼模型
- 批准号:
20K04284 - 财政年份:2020
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high-speed and high-accuracy simulation method on urban emergency air pollution process using lattice Boltzmann method
格子玻尔兹曼法高速高精度城市应急空气污染过程模拟方法开发
- 批准号:
18J13607 - 财政年份:2018
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Construction of lattice-Boltzmann method for direct simulation of the interaction between a gas-liquid interface and sound
直接模拟气液界面与声音相互作用的格子-玻尔兹曼方法的构建
- 批准号:
18K03930 - 财政年份:2018
- 资助金额:
$ 18.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lattice Boltzmann Methods on Parallel Supercomputers for Computing Mass and Momentum Transport of Foams in Filling Columns
并行超级计算机上计算填充塔中泡沫质量和动量传递的格子玻尔兹曼方法
- 批准号:
408059952 - 财政年份:2018
- 资助金额:
$ 18.12万 - 项目类别:
Research Grants
Soft, Structured Layers on the Surface of a Quartz Crystal Microbalance (QCM): A Computational Model to Predict Shifts of Frequency and Bandwidth Based on the Lattice-Boltzmann Method
石英晶体微天平 (QCM) 表面的软结构化层:基于格子-玻尔兹曼方法预测频率和带宽变化的计算模型
- 批准号:
324062370 - 财政年份:2017
- 资助金额:
$ 18.12万 - 项目类别:
Research Grants
Wetting of Elastic Fibres: A Novel Immersed Boundary-Lattice Spring-Lattice Boltzmann Simulation Approach
弹性纤维的润湿:一种新颖的浸入式边界晶格弹簧晶格玻尔兹曼模拟方法
- 批准号:
EP/P007139/1 - 财政年份:2017
- 资助金额:
$ 18.12万 - 项目类别:
Research Grant