CPA -G&V: Collaborative Research: Visual Equivalence: a New Foundation for Perceptually-Based Rendering of Complex Scenes

CPA-G

基本信息

  • 批准号:
    0811680
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

AbstractPI: Kavita Bala (0811680)The goal of realistic imaging is to produce images that faithfully represent the appearance of the real world. Assessing image fidelity is an important aspect of realistic imaging that has broad implications in both computer graphics and digital photography. Recently perceptual metrics based on computational models of human vision have been used to characterize image fidelity; but these metrics typically characterize pixel-wise image differences. When we look at images we don?t see pixels, we see objects with distinct shapes, sizes, materials, and motions. Therefore, there is a need for image fidelity metrics that characterize the appearance properties of objects. This project introduces a new standard for image fidelity called visual equivalence. Images are visually equivalent if they convey the same information about object appearance (shape, material, lighting), even if they are different pixel-by-pixel. This new standard fundamentally expands the scope of how to assess image fidelity, providing a metric that is based on higher-level properties of visual coding.This project seeks to understand and leverage the phenomenon of visual equivalence by: a) conducting a series of psychophysical experiments that develop a foundation for visual equivalence by exploring interactions between the geometry, material and illumination properties of objects in complex scenes; b) developing visual equivalence predictors that apply to a wide range of scenes; and c) demonstrating the practical utility of the concept of visual equivalence in a range of applications including high-fidelity environment map compression and scalable rendering of complex scenes. The products of this research provide valuable new tools for addressing one of the grand challenges in computer graphics: the high performance, high fidelity image synthesis of complex scenes. Further, this new approach to image fidelity should have a significant impact beyond graphics in areas including 2d and 3d digital image acquisition, coding, compression, transmission, storage, and display.
摘要:卡维塔·巴拉(0811680)真实感成像的目标是生成逼真地代表真实世界的图像。评估图像保真度是真实感成像的一个重要方面,在计算机图形学和数字摄影中都有广泛的意义。最近,基于人类视觉计算模型的感知度量被用于表征图像的保真度,但这些度量通常表征像素级的图像差异。当我们看图像时,我们看到的不是像素,而是具有不同形状、大小、材质和运动的物体。因此,需要表征对象的外观属性的图像保真度度量。该项目引入了一种新的图像保真度标准,称为视觉等效性。如果图像传达了关于对象外观(形状、材质、照明)的相同信息,即使它们逐个像素不同,它们在视觉上也是等效的。这一新标准从根本上扩展了如何评估图像保真度的范围,提供了一种基于视觉编码的更高级别属性的度量。本项目试图通过以下方式来理解和利用视觉等值现象:a)进行一系列心理物理实验,通过探索复杂场景中对象的几何、材质和照明属性之间的相互作用来为视觉等值奠定基础;b)开发适用于广泛场景的视觉等值预测器;以及c)展示视觉等值概念在一系列应用中的实用价值,包括高保真环境地图压缩和复杂场景的可伸缩渲染。这项研究的成果为解决计算机图形学中的一个重大挑战提供了有价值的新工具:复杂场景的高性能、高保真图像合成。此外,这种新的图像保真度方法应该在图形以外的领域产生重大影响,包括2D和3D数字图像的获取、编码、压缩、传输、存储和显示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kavita Bala其他文献

Diffusion Formulation for Heterogeneous Subsurface Scattering
非均匀次表面散射的扩散公式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Arbree;B. Walter;Kavita Bala
  • 通讯作者:
    Kavita Bala
Detail synthesis for image-based texturing
基于图像的纹理的细节合成
Activation Regression for Continuous Domain Generalization with Applications to Crop Classification
连续域泛化的激活回归及其在作物分类中的应用
  • DOI:
    10.48550/arxiv.2204.07030
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samarth Khanna;Bram Wallace;Kavita Bala;B. Hariharan
  • 通讯作者:
    B. Hariharan
Radiance interpolants for interactive scene editing and ray tracing
用于交互式场景编辑和光线追踪的辐射插值
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Bala
  • 通讯作者:
    Kavita Bala
Effects of global illumination approximations on material appearance
全局照明近似对材质外观的影响
  • DOI:
    10.1145/1833349.1778849
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaroslav Křivánek;J. Ferwerda;Kavita Bala
  • 通讯作者:
    Kavita Bala

Kavita Bala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kavita Bala', 18)}}的其他基金

CHS: Medium: Collaborative Research: Physics and Learning Integration Using differentiable rendering
CHS:媒介:协作研究:使用可微渲染的物理和学习集成
  • 批准号:
    1900783
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CHS: Small: Data-Driven Material Understanding and Decomposition
CHS:小:数据驱动的材料理解和分解
  • 批准号:
    1617861
  • 财政年份:
    2016
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CGV: Medium: Collaborative Research: Understanding Translucency: Physics, Perception, and Computation
CGV:媒介:协作研究:理解半透明性:物理、感知和计算
  • 批准号:
    1161645
  • 财政年份:
    2012
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Rendering for Visual Realism in Scale-Complex Scenes
职业:在规模复杂的场景中实现视觉真实感的可扩展渲染
  • 批准号:
    0644175
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Feature-based Rendering
基于特征的渲染
  • 批准号:
    0539996
  • 财政年份:
    2005
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了