CHS: Medium: Collaborative Research: Physics and Learning Integration Using differentiable rendering
CHS:媒介:协作研究:使用可微渲染的物理和学习集成
基本信息
- 批准号:1900783
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using image measurements to understand and acquire properties of the physical world (such as the shape of an object, the reflectance of a surface, or the lighting in a room) is a critical capability for many sciences including medicine, material fabrication, remote sensing, robotics, autonomous navigation, architectural design, computer graphics, and computer vision. At a high level, these properties can be found by taking images and using computational algorithms to infer unknown parameters from the measurements. Broadly, the inference algorithms can be classified into two categories. On the one hand, physics-based algorithms try to analytically model and then invert the physics underlying the process of how a scene of certain parameters produces measured images; these algorithms are generally accurate but require a lot of computation. On the other hand, data-driven algorithms use supervised datasets to learn how to directly map measurements to unknowns; these algorithms are computationally efficient but are not guaranteed to produce accurate predictions. This project aims to transform physical acquisition pipelines, by creating general-purpose computational tools that combine the advantages of physics-based and machine-learning-based techniques, and that are simultaneously efficient, accurate and robust. By developing the theory and computational tools for this integration of simulation and learning, the project has the potential for transformative impact in application areas like industrial quality control, material science, oceanography, and biomedical imaging. Widespread adoption of project outcomes will be encouraged by making new software publicly available, as well as by offering tutorials and workshops in computer graphics, vision, and imaging conferences. The project also includes an education and outreach program that is tightly coupled to the research objectives, and which takes the form of courses, summer workshops, and lab visits for K-12 students intended to introduce them to science at an early stage and encourage STEM education. Additionally, the project will contribute towards broadening participation in computing through targeted involvement in existing programs in the participating institutions that focus on outreach to female students, first-generation students, and students from traditionally underrepresented minorities.This project aims to transform physical acquisition pipelines by creating general-purpose computational tools that enable efficient and robust inference. This will be achieved by coupling physics-based and learning-based approaches, in a way that combines their complementary strengths of accuracy, generality, and efficiency. Three core areas of research will contribute to this. First, the project will develop inference pipelines that synergistically combine neural networks with analysis by synthesis optimization, in order to efficiently produce high-fidelity estimates of physical parameters. Neural networks will be trained in a physics-aware manner, by using physically-accurate renderers as layers in their architecture; this will allow the neural networks to simultaneously leverage supervised information and physical knowledge when making predictions. Second, a new class of physically accurate differentiable renderers will be created, which will enable this tight integration of physics and learning without the need to sacrifice computational efficiency. Instead of images, differentiable renderers will estimate their derivatives with respect to scene parameters; this estimation will be performed in a physically accurate way, using physical simulation algorithms derived from first principles and benefiting from innovations targeting improved efficiency. Finally, the advantages of the developed inference tools will be demonstrated in a diverse range of applications such as autonomous sensing, material science and fabrication, and biomedical imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用图像测量来了解和获取物理世界的属性(如物体的形状、表面的反射率或房间内的照明)是许多科学的关键能力,包括医学、材料制造、遥感、机器人、自主导航、建筑设计、计算机图形学和计算机视觉。在更高的层面上,这些特性可以通过拍摄图像并使用计算算法从测量中推断未知参数来找到。广义地讲,推理算法可以分为两类。一方面,基于物理的算法试图对特定参数的场景如何产生测量图像的过程进行解析建模,然后反转;这些算法通常是准确的,但需要大量的计算。另一方面,数据驱动算法使用监督数据集来学习如何将测量直接映射到未知数;这些算法在计算上效率很高,但不能保证产生准确的预测。该项目旨在通过创建结合了基于物理的技术和基于机器学习的技术的优点,同时又高效、准确和健壮的通用计算工具,来改造物理获取管道。通过开发这种模拟和学习相结合的理论和计算工具,该项目有可能在工业质量控制、材料科学、海洋学和生物医学成像等应用领域产生革命性的影响。通过向公众提供新软件以及提供计算机图形学、视觉和成像会议的教程和研讨会,将鼓励广泛采用项目成果。该项目还包括一个与研究目标紧密结合的教育和推广计划,其形式包括课程、暑期研讨会和K-12学生的实验室访问,旨在让他们在早期阶段接触科学,并鼓励STEM教育。此外,该项目将通过有针对性地参与参与机构的现有方案,帮助扩大对计算的参与,这些方案侧重于接触女学生、第一代学生和来自传统上代表性较低的少数民族的学生。该项目旨在通过创建能够实现高效和稳健推理的通用计算工具来改变物理获取管道。这将通过将基于物理的方法和基于学习的方法相结合来实现,这种方法结合了它们在准确性、普遍性和效率方面的互补优势。三个核心研究领域将对此作出贡献。首先,该项目将开发推理管道,将神经网络与合成优化分析协同结合,以便高效地产生高保真的物理参数估计。神经网络将以物理感知的方式进行训练,使用物理上精确的呈现器作为其体系结构中的层;这将允许神经网络在进行预测时同时利用受监督的信息和物理知识。其次,将创建一种新的物理上精确的可微渲染器,这将使物理和学习的紧密结合成为可能,而不需要牺牲计算效率。与图像不同,可区分的渲染器将估计它们相对于场景参数的导数;这种估计将以物理准确的方式执行,使用源自基本原理的物理模拟算法,并受益于旨在提高效率的创新。最后,开发的推理工具的优势将在各种应用中得到展示,如自主传感、材料科学和制造以及生物医学成像。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Change-Aware Sampling and Contrastive Learning for Satellite Images
- DOI:10.1109/cvpr52729.2023.00509
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Utkarsh Mall;Bharath Hariharan;Kavita Bala
- 通讯作者:Utkarsh Mall;Bharath Hariharan;Kavita Bala
Path-space differentiable rendering
- DOI:10.1145/3386569.3392383
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Cheng Zhang;Bailey Miller;Kai Yan;Ioannis Gkioulekas;Shuang Zhao
- 通讯作者:Cheng Zhang;Bailey Miller;Kai Yan;Ioannis Gkioulekas;Shuang Zhao
Field-Guide-Inspired Zero-Shot Learning
- DOI:10.1109/iccv48922.2021.00941
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Utkarsh Mall;Bharath Hariharan;Kavita Bala
- 通讯作者:Utkarsh Mall;Bharath Hariharan;Kavita Bala
Discovering Underground Maps from Fashion
- DOI:10.1109/wacv51458.2022.00057
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Utkarsh Mall;Kavita Bala;Tamara L. Berg;K. Grauman
- 通讯作者:Utkarsh Mall;Kavita Bala;Tamara L. Berg;K. Grauman
A differential theory of radiative transfer
- DOI:10.1145/3355089.3356522
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Cheng Zhang;Lifan Wu;Changxi Zheng;Ioannis Gkioulekas;R. Ramamoorthi;Shuang Zhao
- 通讯作者:Cheng Zhang;Lifan Wu;Changxi Zheng;Ioannis Gkioulekas;R. Ramamoorthi;Shuang Zhao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kavita Bala其他文献
Diffusion Formulation for Heterogeneous Subsurface Scattering
非均匀次表面散射的扩散公式
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
A. Arbree;B. Walter;Kavita Bala - 通讯作者:
Kavita Bala
Detail synthesis for image-based texturing
基于图像的纹理的细节合成
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Ryan M. Ismert;Kavita Bala;D. Greenberg - 通讯作者:
D. Greenberg
Activation Regression for Continuous Domain Generalization with Applications to Crop Classification
连续域泛化的激活回归及其在作物分类中的应用
- DOI:
10.48550/arxiv.2204.07030 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Samarth Khanna;Bram Wallace;Kavita Bala;B. Hariharan - 通讯作者:
B. Hariharan
Radiance interpolants for interactive scene editing and ray tracing
用于交互式场景编辑和光线追踪的辐射插值
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Kavita Bala - 通讯作者:
Kavita Bala
Effects of global illumination approximations on material appearance
全局照明近似对材质外观的影响
- DOI:
10.1145/1833349.1778849 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jaroslav Křivánek;J. Ferwerda;Kavita Bala - 通讯作者:
Kavita Bala
Kavita Bala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kavita Bala', 18)}}的其他基金
CHS: Small: Data-Driven Material Understanding and Decomposition
CHS:小:数据驱动的材料理解和分解
- 批准号:
1617861 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CGV: Medium: Collaborative Research: Understanding Translucency: Physics, Perception, and Computation
CGV:媒介:协作研究:理解半透明性:物理、感知和计算
- 批准号:
1161645 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CPA -G&V: Collaborative Research: Visual Equivalence: a New Foundation for Perceptually-Based Rendering of Complex Scenes
CPA-G
- 批准号:
0811680 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Scalable Rendering for Visual Realism in Scale-Complex Scenes
职业:在规模复杂的场景中实现视觉真实感的可扩展渲染
- 批准号:
0644175 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
- 批准号:
1955699 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1955979 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1956085 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant