RI-Small: Combinatorial Search Algorithms as Rational Agents

RI-Small:作为理性智能体的组合搜索算法

基本信息

  • 批准号:
    0812141
  • 负责人:
  • 金额:
    $ 44.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This project pursues three concurrent activities: 1) analysis of common search spaces and previously proposed search strategies to broadly characterize the relevant regularities that can be exploited during search, 2) development of search algorithms that can efficiently learn, update, and exploit models of those parameters on-line during problem-solving, and 3) comprehensive evaluation of the new algorithms across many common benchmarks in terms of actual CPU time, taking into account their increased overhead. Algorithms will be developed for the two most common types of search problems: 1) shortest-path problems, such as task planning or robot navigation, where the depth of the search tree is not usefully bounded, and 2) bounded-depth problems, such as constraint satisfaction or combinatorial optimization problems, where the number of decision variables is known.The rational search approach yields a form of hybrid metareasoning, in which the problem-solver reasons statistically about which combinatorial reasoning to do next. This combination promises significant gains in robustness and performance over the current paradigm in which search algorithms use the numerical information available to them only in simple ways, such as allowing it to directly dictate expansion order or using it only to prune. Rational search will provide a sound basis for moving beyond search strategies motivated by intuition to algorithms that adapt their behavior in unanticipated ways to suit precisely the problem at hand. By focusingattention on optimal use of information, this project will help the field of heuristic search address the question of problem formulation: what problem-specific heuristic information is most useful to guide search, and how can it best be conveyed to the search algorithm? It will also strengthen the nascent links between machine learning and heuristic search, particularly around the issues of exploration vs exploitation and the value of information. Because they form the engines of most AI systems, improvements in heuristic search algorithms yield social benefits wherever such systems are used. Increasing the robustness and generality of search methods also makes industrial adoption of AI technology easier and faster,widening its applicability.
This project pursues three concurrent activities: 1) analysis of common search spaces and previously proposed search strategies to broadly characterize the relevant regularities that can be exploited during search, 2) development of search algorithms that can efficiently learn, update, and exploit models of those parameters on-line during problem-solving, and 3) comprehensive evaluation of the new algorithms across many common benchmarks in terms of actual CPU time, taking into account their increased开销。 Algorithms will be developed for the two most common types of search problems: 1) shortest-path problems, such as task planning or robot navigation, where the depth of the search tree is not usefully bounded, and 2) bounded-depth problems, such as constraint satisfaction or combinatorial optimization problems, where the number of decision variables is known.The rational search approach yields a form of hybrid metareasoning, in which the problem-solver reasons statistically about which组合推理下一步。这种组合有望在当前范式上稳健性和性能的显着提高,在该范式中,搜索算法只能以简单的方式使用它们可用的数值信息,例如允许其直接决定扩展顺序或仅用于修剪。理性的搜索将为超越直觉促进的搜索策略提供一个合理的基础,这些算法会以意外的方式适应其行为,以精确地适应手头的问题。通过专注于最佳信息使用,该项目将有助于启发式搜索领域解决问题提出问题:哪种特定问题的启发式信息对于指导搜索最有用,以及如何最好地将其传达给搜索算法?它还将加强机器学习与启发式搜索之间的新生联系,尤其是围绕勘探与剥削问题和信息价值的问题。因为它们构成了大多数AI系统的引擎,所以无论使用此类系统,启发式搜索算法的改进都会产生社会利益。提高搜索方法的鲁棒性和一般性也使工业采用AI技术的速度更加容易,更快,从而扩大了其适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wheeler Ruml其他文献

Simpler Bounded Suboptimal Search
更简单的有界次优搜索
  • DOI:
    10.1609/aaai.v28i1.8846
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Hatem;Wheeler Ruml
  • 通讯作者:
    Wheeler Ruml
Using Distance Estimates in Heuristic Search
在启发式搜索中使用距离估计
A seed-growth heuristic for graph bisection
图二分的种子增长启发式
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joe Marks;Wheeler Ruml;Stuart M. Shieber;J. Ngo
  • 通讯作者:
    J. Ngo
Beliefs We Can Believe in: Replacing Assumptions with Data in Real-Time Search
我们可以相信的信念:在实时搜索中用数据代替假设
Goal Reasoning as Multilevel Planning
作为多层次规划的目标推理
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alison Paredes;Wheeler Ruml
  • 通讯作者:
    Wheeler Ruml

Wheeler Ruml的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wheeler Ruml', 18)}}的其他基金

NSF-BSF: RI: Small: Planning and Acting While Time Passes
NSF-BSF:RI:小型:随着时间的推移进行规划和行动
  • 批准号:
    2008594
  • 财政年份:
    2020
  • 资助金额:
    $ 44.82万
  • 项目类别:
    Standard Grant
CAREER: Time-Aware Heuristic Search
职业:时间感知启发式搜索
  • 批准号:
    1150068
  • 财政年份:
    2012
  • 资助金额:
    $ 44.82万
  • 项目类别:
    Continuing Grant
A Symposium on Combinatorial Search
组合搜索研讨会
  • 批准号:
    0931531
  • 财政年份:
    2009
  • 资助金额:
    $ 44.82万
  • 项目类别:
    Standard Grant
A Symposium Series on Heuristic Search and Its Applications
启发式搜索及其应用系列研讨会
  • 批准号:
    0831035
  • 财政年份:
    2008
  • 资助金额:
    $ 44.82万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子化合物组合诱导CAR T细胞重编程增强干性及抗肿瘤效应的实验研究
  • 批准号:
    82200207
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
小分子化合物组合诱导CAR T细胞重编程增强干性及抗肿瘤效应的实验研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子化合物组合诱导SCAP血管内皮细胞向转分化的实验研究
  • 批准号:
    81970934
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于Ca2+-calcineurin-NFAT2和 IDO1-Kyn-AhR双重信号抑制的小分子组合药物抗肿瘤疗效及肿瘤免疫机制研究
  • 批准号:
    81872897
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Nup210在小分子化合物组合诱导小鼠成纤维细胞转分化为神经干细胞中的作用及机制研究
  • 批准号:
    31871498
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
  • 批准号:
    10481965
  • 财政年份:
    2024
  • 资助金额:
    $ 44.82万
  • 项目类别:
Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
  • 批准号:
    10682983
  • 财政年份:
    2023
  • 资助金额:
    $ 44.82万
  • 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
  • 批准号:
    10648346
  • 财政年份:
    2023
  • 资助金额:
    $ 44.82万
  • 项目类别:
Targeting epigenetic machinery to overcome myeloid cell-mediated resistance to anti-PD-1 therapy in GBM
靶向表观遗传机制克服 GBM 中骨髓细胞介导的抗 PD-1 治疗耐药性
  • 批准号:
    10634277
  • 财政年份:
    2023
  • 资助金额:
    $ 44.82万
  • 项目类别:
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
  • 批准号:
    10644211
  • 财政年份:
    2023
  • 资助金额:
    $ 44.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了