New Numerical and Theoretical Methods to Analyse Disordered Materials
分析无序材料的新数值和理论方法
基本信息
- 批准号:0812204
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports computational and theoretical research on the low-temperature properties of spin glasses and models inspired by strongly disordered materials. The research is based in part on advances made on a project supported through the Information Technology Research initiative. This project involves developing, applying, and communicating new methods to probe structural and dynamical properties of disordered systems and networks, utilizing the renormalization group and the results of research on the Extremal Optimization heuristic. Thrusts of the research include: 1) Frustrated lattices requiring up to a billion variables above and near bond percolation will be simulated to predict low-temperature exponents with the accuracy essential to reveal scaling relations and to tightly constrain theoretical models. 2) New meta-heuristics will be developed; these are indispensable for low-energy properties of glassy materials, combinatorial optimization, or complex networks. 3) Investigating statistical models at the transition between low-dimensional and mean-field behavior using numerical and analytical techniques to elucidate scaling and critical dimensions in glasses, and small-world properties in networks. The PI will explore a wide range of applications for his heuristics and new network models.This award supports the education of students, whose academic training provides the future backbone of our information technology infrastructure. The PI plans to develop sophisticated software in a web-based environment, utilizing a student-administered cluster-computer. All results and software products will be disseminated widely through publications, presentations, and the internet. The projects will provide students with education and research experience in the study of statistical physics. Ties with researchers at Los Alamos National Laboratory will provide students further real-life research experience.NONTECHNICAL SUMMARY:This award supports computational and theoretical research at the interface of statistical physics and computer science. The research is inspired by disordered materials in which atoms or the smallest units of magnetism cannot usefully be viewed as being arranged in a regular crystalline array. The models that are believed to contain essential physics of these materials are examples of complex systems known both to materials research and computer science. Included in this class of problems are how proteins find the optimum configuration of atoms for biological function, circuit design, and the seemingly simple problem of finding the minimum distance a salesman must travel to visit each city of a list of cities only once. These are difficult to solve as they contain conflicting constraints and are characterized by many almost correct solutions. The PI has developed a computer algorithm that may elucidate the properties of disordered magnetic materials at low-temperatures. This award supports a continuation of that work and the more general application of the PI?s computer algorithm to a wider class of problems known as optimization problems. The research is based in part on advances made on a project supported through the Information Technology Research initiative. This award supports the education of students, whose academic training provides the future backbone of our information technology infrastructure. The PI plans to develop sophisticated software in a web-based environment, utilizing a student-administered cluster-computer. All results and software products will be disseminated widely through publications, presentations, and the internet. The projects will provide students with education and research experience in the study of statistical physics. Ties with researchers at Los Alamos National Laboratory will provide students further real-life research experience.
技术摘要:该奖项支持对自旋玻璃的低温特性和受强无序材料启发的模型的计算和理论研究。这项研究部分基于信息技术研究倡议支持的一个项目所取得的进展。该项目涉及开发,应用和交流新方法来探索无序系统和网络的结构和动力学特性,利用重整化群和极值优化启发式研究结果。该研究的重点包括:1)将模拟需要高达10亿个变量以上和附近的键渗流的挫折晶格,以预测低温指数,其准确性对于揭示标度关系和严格约束理论模型至关重要。2)新的元动力学将被开发;这些是必不可少的低能量性质的玻璃材料,组合优化,或复杂的网络。3)利用数值和分析技术研究低维和平均场行为之间过渡的统计模型,以阐明玻璃中的标度和临界尺寸,以及网络中的小世界特性。PI将探索其物流和新网络模型的广泛应用。该奖项支持学生的教育,其学术培训为我们的信息技术基础设施提供了未来的支柱。PI计划在基于网络的环境中开发复杂的软件,利用学生管理的集群计算机。所有成果和软件产品都将通过出版物、介绍和互联网广泛传播。这些项目将为学生提供统计物理学研究方面的教育和研究经验。与洛斯阿拉莫斯国家实验室的研究人员的联系将为学生提供进一步的现实生活中的研究经验。非技术性总结:该奖项支持统计物理和计算机科学接口的计算和理论研究。这项研究的灵感来自于无序材料,其中原子或最小的磁性单元不能有效地被视为以规则的晶体阵列排列。被认为包含这些材料的基本物理特性的模型是材料研究和计算机科学已知的复杂系统的例子。这类问题包括蛋白质如何为生物功能、电路设计找到原子的最佳配置,以及找到推销员必须旅行一次才能访问城市列表中的每个城市的最小距离。这些问题很难解决,因为它们包含相互冲突的约束,并且具有许多几乎正确的解决方案。PI开发了一种计算机算法,可以阐明无序磁性材料在低温下的特性。该奖项支持继续这项工作和更广泛的应用PI?的计算机算法,以更广泛的一类问题,称为优化问题。 这项研究部分基于信息技术研究倡议支持的一个项目所取得的进展。该奖项支持学生的教育,他们的学术培训提供了我们的信息技术基础设施的未来骨干。PI计划在基于网络的环境中开发复杂的软件,利用学生管理的集群计算机。所有成果和软件产品都将通过出版物、介绍和互联网广泛传播。这些项目将为学生提供统计物理学研究方面的教育和研究经验。与洛斯阿拉莫斯国家实验室的研究人员的联系将为学生提供进一步的现实生活中的研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Boettcher其他文献
Hysteretic response to different modes of ramping an external field in sparse and dense Ising spin glasses
- DOI:
10.1016/j.physa.2024.130070 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Mahajabin Rahman;Stefan Boettcher - 通讯作者:
Stefan Boettcher
Spines of random constraint satisfaction problems: definition and connection with computational complexity
- DOI:
10.1007/s10472-005-7033-2 - 发表时间:
2005-08-01 - 期刊:
- 影响因子:1.000
- 作者:
Gabriel Istrate;Stefan Boettcher;Allon G. Percus - 通讯作者:
Allon G. Percus
Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture
基于自旋玻璃基态测试的深度强化学习启发式算法:大局观
- DOI:
10.1038/s41467-023-41106-y - 发表时间:
2023-09-14 - 期刊:
- 影响因子:15.700
- 作者:
Stefan Boettcher - 通讯作者:
Stefan Boettcher
A two-scale problem describing moisture transport in porous materials
描述多孔材料中水分传输的两尺度问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bruno Chagas;Renato Portugal;Stefan Boettcher;and Etsuo Segawa;Atsuhide ISHIDA;大林一平;熊崎耕太 - 通讯作者:
熊崎耕太
Instability cascades in disordered systems indicate record dynamics
无序系统中的不稳定级联表明动态记录
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stefan Boettcher;P. Gago - 通讯作者:
P. Gago
Stefan Boettcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Boettcher', 18)}}的其他基金
Structures and Dynamics in Disordered Systems
无序系统中的结构和动力学
- 批准号:
1207431 - 财政年份:2012
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
ITR: Large-Scale Applications and Theory of Extremal Optimization
ITR:大规模应用和极值优化理论
- 批准号:
0312510 - 财政年份:2003
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
- 批准号:
2238360 - 财政年份:2023
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
- 批准号:
RGPIN-2018-04232 - 财政年份:2022
- 资助金额:
$ 24.6万 - 项目类别:
Discovery Grants Program - Individual
CDS&E: Theoretical, Numerical and Experimental Analysis of Gas-Ion Energy Exchange in Ion Mobility for the Separation of Polyatomic Ions
CDS
- 批准号:
2203968 - 财政年份:2022
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Theoretical and numerical investigation of particle-vortex interaction in semi-dilute dusty flows
半稀尘流中粒子-涡相互作用的理论与数值研究
- 批准号:
2148710 - 财政年份:2022
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
- 批准号:
RGPIN-2018-04232 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Discovery Grants Program - Individual
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2107934 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Theoretical and Numerical Studies of Astrophysical Quark Matter: Implications to Nuclear and Explosive Astrophysics
天体物理夸克物质的理论和数值研究:对核和爆炸天体物理学的影响
- 批准号:
RGPIN-2018-04232 - 财政年份:2020
- 资助金额:
$ 24.6万 - 项目类别:
Discovery Grants Program - Individual
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
$ 24.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists