ITR: Large-Scale Applications and Theory of Extremal Optimization
ITR:大规模应用和极值优化理论
基本信息
- 批准号:0312510
- 负责人:
- 金额:$ 28.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. The Divisions of Materials Research and Mathematics jointly fund this grant. It supports the application of the extremal optimization heuristic, developed by the PI, to hard optimization problems, ranging from the physics of disordered materials to combinatorial problems in computer science and artificial intelligence. The PI aims to (1) measure ground-state energies, entropies, and overlaps for spin glasses on networks and lattices, and (2) elucidate the order parameter at the SAT/UNSAT transition in combinatorial optimization problems. Extremal optimization has produced many results for lattice spin-glasses, and agrees with recent theoretical predictions on finite-connectivity Bethe-lattices to within 0.1%. A short-term objective is to produce numerical results for spin-glass systems to test the cutting-edge predictions of replica symmetry breaking on low-connectivity systems. Central to the research is the investigation of hybrid methods, derived from experimental and theoretical advances, which enable the study of much larger and more realistic systems. Comparative studies will educate practitioners about the potential of this approach to optimization with the hope of inspiring further applications. This project will introduce students to computational techniques and a spectrum of simulation methods in the process of experimenting with optimization problems on networks relevant for many physical and cross-disciplinary problems. Students will interact at the interface between computer science and physics, and as part of their education will conduct student research at Los Alamos National Laboratory's Computer and Computational Sciences division under an existing collaboration. Assessing the potential of this novel method in comparison with other optimization methods will afford undergraduate students in particular with a comprehensive learning experience. %%%This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. The Divisions of Materials Research and Mathematics jointly fund this grant. It supports research and education in the statistical mechanics of disordered systems. The PI will continue work on an optimization algorithm he developed and apply it to problems ranging from the physics of disordered materials to combinatorial problems in computer science and artificial intelligence. Successful algorithmic strategies will be applied to realistic systems, for instance, to help settle long-standing questions about three dimensional spin glasses.This project will introduce students to computational techniques and a spectrum of simulation methods in the process of experimenting with optimization problems on networks relevant for many physical and cross-disciplinary problems. Students will interact at the interface between computer science and physics, and as part of their education will conduct student research at Los Alamos National Laboratory's Computer and Computational Sciences division under an existing collaboration. Assessing the potential of this novel method in comparison with other optimization methods will afford undergraduate students in particular with a comprehensive learning experience. ***
该奖项是根据ITR招标NSF-02-168提交的“小型”类别提案而颁发的。材料研究和数学部门共同资助这项赠款。它支持由PI开发的极值优化启发式应用于硬优化问题,从无序材料的物理学到计算机科学和人工智能中的组合问题。PI的目的是(1)测量网络和晶格上自旋玻璃的基态能量,熵和重叠,(2)阐明组合优化问题中SAT/UNSAT转变的序参数。极值优化产生了许多结果的晶格自旋玻璃,并同意最近的理论预测有限连接贝特晶格在0.1%。短期目标是产生自旋玻璃系统的数值结果,以测试低连接系统上副本对称性破缺的前沿预测。研究的核心是混合方法的研究,来自实验和理论的进步,使更大和更现实的系统的研究。比较研究将教育从业者这种方法的潜力,以优化,希望能激发进一步的应用。该项目将向学生介绍计算技术和模拟方法的频谱在实验过程中与许多物理和跨学科问题相关的网络优化问题。学生将在计算机科学和物理学之间的接口进行互动,作为他们教育的一部分,他们将在洛斯阿拉莫斯国家实验室的计算机和计算科学部门进行学生研究。与其他优化方法相比,评估这种新方法的潜力将为本科生提供全面的学习经验。%此奖项是根据ITR招标NSF-02-168提交的“小型”类别提案授予的。材料研究和数学部门共同资助这项赠款。它支持无序系统统计力学的研究和教育。PI将继续研究他开发的优化算法,并将其应用于从无序材料物理到计算机科学和人工智能中的组合问题。 成功的算法策略将应用于现实系统,例如,帮助解决长期存在的关于三维自旋玻璃的问题。该项目将向学生介绍计算技术和一系列模拟方法,并在与许多物理和跨学科问题相关的网络上进行优化问题的实验。学生将在计算机科学和物理学之间的接口进行互动,作为他们教育的一部分,他们将在洛斯阿拉莫斯国家实验室的计算机和计算科学部门进行学生研究。与其他优化方法相比,评估这种新方法的潜力将为本科生提供全面的学习经验。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Boettcher其他文献
Hysteretic response to different modes of ramping an external field in sparse and dense Ising spin glasses
- DOI:
10.1016/j.physa.2024.130070 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Mahajabin Rahman;Stefan Boettcher - 通讯作者:
Stefan Boettcher
Spines of random constraint satisfaction problems: definition and connection with computational complexity
- DOI:
10.1007/s10472-005-7033-2 - 发表时间:
2005-08-01 - 期刊:
- 影响因子:1.000
- 作者:
Gabriel Istrate;Stefan Boettcher;Allon G. Percus - 通讯作者:
Allon G. Percus
Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture
基于自旋玻璃基态测试的深度强化学习启发式算法:大局观
- DOI:
10.1038/s41467-023-41106-y - 发表时间:
2023-09-14 - 期刊:
- 影响因子:15.700
- 作者:
Stefan Boettcher - 通讯作者:
Stefan Boettcher
A two-scale problem describing moisture transport in porous materials
描述多孔材料中水分传输的两尺度问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bruno Chagas;Renato Portugal;Stefan Boettcher;and Etsuo Segawa;Atsuhide ISHIDA;大林一平;熊崎耕太 - 通讯作者:
熊崎耕太
Instability cascades in disordered systems indicate record dynamics
无序系统中的不稳定级联表明动态记录
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stefan Boettcher;P. Gago - 通讯作者:
P. Gago
Stefan Boettcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Boettcher', 18)}}的其他基金
Structures and Dynamics in Disordered Systems
无序系统中的结构和动力学
- 批准号:
1207431 - 财政年份:2012
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
New Numerical and Theoretical Methods to Analyse Disordered Materials
分析无序材料的新数值和理论方法
- 批准号:
0812204 - 财政年份:2008
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
ITR: Collaborative Research: (ASE+NHS) - (int): BFT-LS: Byzantine Fault Tolerance for Large-Scale, High-Performance Distributed Storage Systems
ITR:协作研究:(ASE NHS) - (int):BFT-LS:大规模、高性能分布式存储系统的拜占庭容错
- 批准号:
0427408 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
Collaborative Research: ITR: (ASE)-(sim+dmc): Algorithms for Large-Scale Simulations of Turbulent Combustion
合作研究:ITR:(ASE)-(sim dmc):湍流燃烧大规模模拟算法
- 批准号:
0426787 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
Collaborative Research: ITR: (ASE)-(sim+dmc): Algorithms for Large-Scale Simulations of Turbulent Combustion
合作研究:ITR:(ASE)-(sim dmc):湍流燃烧大规模模拟算法
- 批准号:
0426857 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
ITR: Collaborative Research: (ASE+NHS) - (int): BFT-LS: Byzantine Fault Tolerance for Large-Scale, High-Performance Distributed Storage Systems
ITR:协作研究:(ASE NHS) - (int):BFT-LS:大规模、高性能分布式存储系统的拜占庭容错
- 批准号:
0428107 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing grant
ITR - \(ASE+NHS\) -\ (dmc+int\): Toward a Multi-Layered Architecture for Reliable and Secure Large-Scale Networks: The Case of an Electric Power Grid
ITR - (ASE NHS) - (dmc int):迈向可靠、安全的大规模网络的多层架构:以电网为例
- 批准号:
0428404 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
ITR-(NHS)-(sim): Large-Scale Network Simulation for Security and Survivability Evaluation
ITR-(NHS)-(sim):用于安全性和生存性评估的大规模网络仿真
- 批准号:
0427700 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
ITR/NGS: Automatic Performance Tuning for Large Scale Scientific Applications
ITR/NGS:大规模科学应用的自动性能调整
- 批准号:
0325873 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Modeling and Mitigation of Communication-Delay Effects on Load Balancing in Large-Scale Distributed Systems
ITR 协作研究:大规模分布式系统中通信延迟对负载平衡影响的建模和缓解
- 批准号:
0312611 - 财政年份:2003
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0352334 - 财政年份:2003
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
ITR: Collaborative Research: Large Scale Collaboration in Critical Environments
ITR:协作研究:关键环境中的大规模协作
- 批准号:
0325217 - 财政年份:2003
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant